
Reviewed for technical accuracy August 13, 2025

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for a Cell-Based Architecture for Amazon EKS
This architecture diagram shows how you can use a cell-based architecture to improve resiliency and reduce data transfer costs

for Amazon EKS workloads. Dedicated Load Balancer per cell ensures session affinity is confined to a single cell; minimizing

cross-AZ dependencies

Region

Users

AZ1 AZ2 AZn

Data Store Layer

Cell 1 EKS Cluster 1 Cell 2 EKS Cluster 2 Cell n EKS Cluster n

Cell Routing Layer

Amazon DynamoDB Amazon RDS Amazon ElastiCache

Amazon Route 53

Service A Service B Service A Service AService B Service B

A cell consists of an Amazon Elastic

Kubernetes Service (Amazon EKS) cluster

having its compute nodes (workloads) and

dedicated Application Load Balancers(ALB)

deployed within a single Availability Zone (AZ).

These cells are independent replicas of the

application and create a fault isolation

boundary to limit the scope of impact. There

can be multiple cells per AZ, and multiple cells

can be deployed across multiple AZs to

provide high availability and resiliency against

AZ failures.

Clients are routed towards Amazon EKS

workloads within each cell by a cell-routing

layer, which consists of Amazon Route 53

weighted routing records, and Amazon Route

53 Application Recovery Controller to

provide readiness checks, routing control, and

zonal shifts capability. An application load

balancer balances the traffic to the

Kubernetes resources within each cell.

Once the request reaches a cell, all

subsequent internal communications among

the Kubernetes (k8s) workloads stays within

the cell. This prevents cross-cell dependency,

making each cell statically stable and more

resilient. Additionally, with minimal inter-AZ

communication, there are no inter-AZ data

transfer costs for chatty workloads, as traffic

never leaves the AZ boundary. Amazon EKS

workloads utilize Karpenter for compute

autoscaling needs.

Amazon EKS workloads that require access to

data persistence can continue to use other

data store services managed by AWS, like

Amazon Relational Database Service

(Amazon RDS), Amazon DynamoDB, and

Amazon ElastiCache, which span across

multiple AZs for high availability.

1

2

3

4

1

2

1

33

1

AWS Cloud

3

4

Amazon EKS Amazon EKS Amazon EKS

ALB Cell nALB Cell 2ALB Cell 1

Reviewed for technical accuracy August 13, 2025

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Region

Users

AZ AZ AZ

AWS Cloud

Cell Routing Layer

Region

CellCellCell

Cell Routing Layer

Supercell

A cell consists of an Amazon Elastic

Kubernetes Service (Amazon EKS) cluster

having its compute nodes (workloads) and

dedicated Application Load Balancers(ALB)

deployed within a single Availability Zone (AZ).

These cells are independent replicas of the

application and create a fault isolation

boundary to limit the scope of impact. There

can be multiple cells per AZ, and multiple cells

can be deployed across multiple AZs to

provide high availability and resiliency against

AZ failures.

An aggregation of multiple cells within a

Region is called a supercell.

Amazon EKS workloads in each AWS Region,

or supercell, use ELB to load balance the

traffic to Amazon EKS workloads within each

cell.

Clients are routed to a supercell using the

Route 53 weighted routing policy and also use

the Route 53 Application Recovery Controller

to provide routing control and zonal shift

capabilities.

Multiple supercells can be deployed across

AWS Regions for disaster recovery, or to

satisfy data residency requirements.

Supercell

Amazon Route 53

Guidance for a Cell-Based Architecture for Amazon EKS
This architecture diagram shows how multiple cells are aggregated to create a supercell. It also outlines how those supercells

are routed.

1

2

3

4

5
1

2

3

5

1

2

3

4

5

