
Reviewed for technical accuracy September 3, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Connected Mobility on AWS
Connected Vehicle Discovery Service
This architecture diagram shows how to build a multi-region, global discovery service to provide localization and configuration 

to each segment of the vehicle lifecycle.

Throughout a vehicle's lifecycle, it will 

periodically check to see if a new configuration 

exists by calling an AWS Global Accelerator 

endpoint to receive the latest vehicle 

configuration. To implement a multi-region 

architecture for Discovery APIs, customers can 

use Global Accelerator instead of building 

this solution using Amazon CloudFront based 

on Amazon Route 53.

The criticality of the service demands a multi-

region approach to ensure high availability and 

low latency across the global footprint of the 

OEM. This architecture could span multiple 

regions across the globe where the OEM 

operates.

OEMs use Amazon Route53 to host their own 

domain, and latency-based routing will handle 

routing the request to healthy Application 

Load Balancer instances in the lowest latency 

respective region.

For High Availability worker nodes to process 

requests, we recommend Amazon Elastic 

Kubernetes Service (Amazon EKS) setting 

up clusters that span both Availability Zones 

and AWS Regions. 

For stateful applications, there are multiple 

ways to implement cross-region replication. 

For a fully-managed, multi-region, multi-active 

database and fast local read and write 

performance, implement Amazon DynamoDB 

global tables.

Each step of a vehicle’s lifecycle requires 

different software configurations. The 

automaker uses internal software to update the 

production status of the vehicle, which 

modifies the configuration of the vehicle for 

that stage.

AWS Cloud

Private VPC

Central Region Region 1

Latency based

routing

Public subnet

AWS Global Accelerator

Amazon EKS 

Worker Node

Amazon MemoryDB

Amazon DynamoDB

Amazon DynamoDB

Amazon MemoryDB

Amazon EKS 

Worker Node

Amazon DynamoDB

Global table

EKS VPC

Amazon EKS 

Control Plane
OEM 

Operations

Amazon Route 53

1

2

3

4

5

6

1

2

3

4

5

6

AWS Transit 

Gateway

Application Load BalancerApplication Load Balancer

IoT Car



Reviewed for technical accuracy September 3, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Connected Mobility on AWS
Connected Vehicle Ingestion Pipeline
This architecture diagram shows how to build a scalable endpoint to provide connectivity and communication services for 

a connected fleet of vehicles. 

For scalable connectivity, OEMs should use 

AWS IoT Core as the managed broker to 

manage connectivity and data ingest from the 

vehicle to the cloud. AWS IoT Core supports 

X.509 mTLS authentication to support fan-in 

MQTT streaming from the connected fleet.

Using AWS IoT Core Basic Ingest and IoT 

Rules with direct integration with Amazon 

Managed Streaming for Apache Kafka 

(Amazon MSK), vehicles send encoded and 

compressed telemetry data directly to a Kafka 

topic for decoding, decompression and 

message enrichment.

For the authentication method into Amazon 

MSK from the IoT Core rule, use 

SCRAM/SASL and store those credentials in 

AWS Secrets Manager for real-time IoT rule 

access.

OEMs also batch telemetry and upload directly 

to Amazon Simple Storage Service 

(Amazon S3) using a pre-signed URL. They 

upload the batch file directly to S3 for further 

processing in Kafka to downstream.

The Amazon Managed Service for Apache 

Flink (Amazon MSF) applications subscribe 

to the Kafka message stream and decode and 

enrich the message prior to republishing to a 

separate Amazon MSK topic. OEMs use Flink 

to perform streaming event processing for high 

throughput vehicle use cases.

Amazon MSF interacts with Amazon 

DynamoDB using the dedicated connector, 

which enables writing (or reading) data to 

Amazon DynamoDB tables as a sink. To 

enable this communication, configure the Flink 

application to access the VPC endpoint.

AWS Cloud

Customer VPC

Local Region

ElastiCache

for Redis Amazon DynamoDB

AWS IoT Core

MQTT 

Streaming

Batch binary 

upload

Amazon S3

Availability Zone 2Availability Zone 1

Private subnetAWS Secrets 

Manager
Private subnet

Amazon MSK

Broker Broker

Flink Jobs Flink Jobs
Amazon MSF

KMS Key

(secret encryption)

IoT rule Amazon SQS

Amazon S3

1

2

3

4

5

6

1

2

3

4

5

6

IoT Car IoT Car



Reviewed for technical accuracy September 3, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Connected Mobility on AWS
Connected Vehicle Telemetry Distribution 
This architecture diagram shows how to build a GraphQL-based, multi-region data distribution platform that delivers near 

real-time vehicle telemetry to customers.

Standard data processing pipelines using AWS 

IoT Core as the connectivity layer save the 

vehicle’s Last Known State to Amazon 

DynamoDB. From there AWS AppSync

provides a GraphQL API to the companion 

application to deliver the vehicle status to the 

customer. 

Implementing Amazon CloudFront seamlessly 

routes customer requests to the API in the AWS 

Region with the lowest latency to the client’s 

location, reducing latency for end users while 

increasing the application’s availability by 

providing GraphQL API endpoints in multiple 

Regions.

Customers want the companion application to 

be up-to-date and accurate. Subscriptions for 

this scenario are better as the data changes are 

small and incremental relative to the large 

amount of information displayed. AWS 

AppSync enables those clients to listen to real-

time data changes through GraphQL 

subscriptions.

The vehicle’s Last Known State is stored in 

Amazon DynamoDB and uses global tables to 

replicate the state between regions. This 

provides an added layer of multi-region 

redundancy, reducing latency to the user.

Using Amazon Event Bridge as an AWS 

AppSync target to enrich events before sending 

to subscribers and to create a persistence API 

to ensure mutations are only sent when a 

customer is connected.

The persistence API keeps track of the 

connection current state in ElasticCache for 

Redis to ensure only companion applications 

currently connected to AWS receive mutations 

from AWS AppSync.

AWS Cloud

Local Region

Amazon Cognito

Alternate Region

DDB StreamAWS Lambda

handler function

Amazon CloudFront

AWS Certificate

Manager (ACM)

Certificate authority

Amazon DynamoDB

Global table

Amazon Route 53

AWS AppSync
Amazon DynamoDB

Amazon EventBridge

AWS Lambda 

status function

AWS Lambda

heartbeat function

AWS Lambda

disconnect function
AWS Lambda

timeout function

ElastiCache

for Redis

Global 

Customers

AWS IoT 

Core

Data 

Processing 

Pipeline

1

2

3

4

5

6

1

2

3

4

5

6

IoT Car

IoT Car

DDB StreamAWS Lambda

handler function

AWS AppSync
Amazon DynamoDB

Amazon EventBridge

AWS Lambda 

status function

AWS Lambda

heartbeat function

AWS Lambda

disconnect function
AWS Lambda

timeout function



Reviewed for technical accuracy September 3, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Connected Mobility on AWS
Connected Vehicle Data Mesh
This architecture diagram shows how to build a custom data mesh service on AWS that helps deliver data products via 

managed processes to end consumers. This slide shows steps 1-5.

The data producers (vehicles) publish data 

products in the business catalog provided by the 

Amazon DataZone data portal hosted in the 

central governance account. The data 

producers publish data products in the AWS 

Glue Data Catalog of the central governance 

account. AWS Lake Formation manages 

access to the entities of the central Data 

Catalog.

Data consumers (users) log in to the data portal 

with their AWS credentials or single sign-on 

credentials. They browse the catalog and 

search for the data products of their interest with 

keywords. The data mesh concept focuses on a 

decentralized, product-driven organization with 

explicit data products, responsible agile teams, 

and strong ownership inside domains.

After the data users belonging to the consumer 

teams find the data product of their interest, they 

request access to the data. Amazon DataZone

has a built-in access-management workflow that 

the data owner uses to review and approve the 

request.

The data consumer teams consume the data to 

empower their artificial intelligence and machine 

learning (AI/ML), analytics and reporting, and 

extract, transform, and load (ETL) use cases.

Data consumers can request access to 

respective datasets through the Amazon 

DataZone data portal. Data providers who are 

responsible for granting access to their datasets 

can grant AWS Lake Formation fine-grained 

permissions to a consumer account.

Region account 1 –

Producer (Ingest) 

Region account N –

Producer (Ingest) 

Central governance account

Central RegionProducer Region

Data Layer

Amazon S3

Iceberg Tables
AWS Glue

Data Catalog

Crawler AWS Glue

Data Quality
AWS Glue 

ETL

Amazon DataZone

Amazon DataZone data portal

Amazon DataZone domain units

Data projects

Business data 

catalog

Search data 

products

Management 

workflow

Region account 1 –

Consumer

Region account N –

Consumer

Consumer Region

AI/ML

Amazon SageMaker AI

Analytics & Reporting

Amazon Athena

Amazon QuickSight

AWS Lake Formation

AWS Glue

Data Catalog

1

2

3

4

5

1

2

3

4

5

6

7

IoT Car



Reviewed for technical accuracy September 3, 2025

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Reference Architecture

Guidance for Connected Mobility on AWS
Connected Vehicle Data Mesh
This architecture diagram shows how to build a custom data mesh service on AWS that helps deliver data products via 

managed processes to end consumers. This slide shows steps 6-7.

To ensure PII data stays in region, out of access 

to unauthorized accounts, perform proper data 

masking and anonymization to protect PII, 

especially when sharing data across domains. 

Use secondary Amazon Simple Storage 

Service (Amazon S3) buckets with sanitized 

data that data consumers might need to access. 

To ensure OEMs comply with local regulatory 

laws such as the EU Data Act and GDPR, store 

data in Amazon S3, as it has built-in controls to 

help customers with access control (with fine 

granular access and geo-restrictions), 

monitoring and logging, encryption at rest, and 

strong compliance frameworks and security 

standards.

Region account 1 –

Producer (Ingest) 

Region account N –

Producer (Ingest) 

Central governance account

Central RegionProducer Region

Data Layer

Amazon S3

Iceberg Tables
AWS Glue

Data Catalog

Crawler AWS Glue

Data Quality
AWS Glue 

ETL

Amazon DataZone

Amazon DataZone data portal

Amazon DataZone domain units

Data projects

Business data 

catalog

Search data 

products

Management 

workflow

Region account 1 –

Consumer

Region account N –

Consumer

Consumer Region

AI/ML

Amazon SageMaker AI

Analytics & Reporting

Amazon Athena

Amazon QuickSight

AWS Lake Formation

AWS Glue

Data Catalog

7
1

2

3

4

5

6

7

IoT Car

6


