
Archived

Encrypting Data at Rest

Ken Beer

Ryan Holland

November 2014

https://aws.amazon.com/security/security-learning

This paper has been archived. For the latest
security information, see the AWS Cloud Security
Learning page on the AWS website at:

https://aws.amazon.com/security/security-learning

Archived

Archived

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 2 of 20

Contents
Contents 2	

Abstract 2	

Introduction 2	

The Key to Encryption: Who Controls the Keys? 3	

Model A: You control the encryption method and the entire KMI 4	

Model B: You control the encryption method; AWS provides the
storage component of the KMI while you provide the management
layer of the KMI 11	

Model C: AWS controls the encryption method and the entire KMI 12	

Conclusion 17	

References and Further Reading 19	

Abstract
Organizational policies, or industry or government regulations, might require the use of
encryption at rest to protect your data. The flexible nature of Amazon Web Services
(AWS) allows you to choose from a variety of different options that meet your needs.
This whitepaper provides an overview of different methods for encrypting your data at
rest available today.

Introduction
Amazon Web Services (AWS) delivers a secure, scalable cloud computing platform with
high availability, offering the flexibility for you to build a wide range of applications. If you
require an additional layer of security for the data you store in the cloud, there are
several options for encrypting data at rest—ranging from completely automated AWS
encryption solutions to manual, client-side options. Choosing the right solutions depends
on which AWS service you’re using and your requirements for key management. This
white paper provides an overview of various methods for encrypting data at rest in AWS.
Links to additional resources are provided for a deeper understanding of how to actually
implement the encryption methods discussed.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 3 of 20

The Key to Encryption: Who Controls the
Keys?
Encryption on any system requires three components: (1) data to encrypt; (2) a method
to encrypt the data using a cryptographic algorithm; and (3) encryption keys to be used
in conjunction with the data and the algorithm. Most modern programming languages
provide libraries with a wide range of available cryptographic algorithms, such as the
Advanced Encryption Standard (AES). Choosing the right algorithm involves evaluating
security, performance, and compliance requirements specific to your application.
Although the selection of an encryption algorithm is important, protecting the keys from
unauthorized access is critical. Managing the security of encryption keys is often
performed using a key management infrastructure (KMI). A KMI is composed of two sub-
components: the storage layer that protects the plaintext keys and the management
layer that authorizes key usage. A common way to protect keys in a KMI is to use a
hardware security module (HSM). An HSM is a dedicated storage and data processing
device that performs cryptographic operations using keys on the device. An HSM
typically provides tamper evidence, or resistance, to protect keys from unauthorized use.
A software-based authorization layer controls who can administer the HSM and which
users or applications can use which keys in the HSM.

As you deploy encryption for various data classifications in AWS, it is important to
understand exactly who has access to your encryption keys or data and under what
conditions. As shown in Figure 1, there are three different models for how you and/or
AWS provide the encryption method and the KMI.

• You control the encryption method and the entire KMI.

• You control the encryption method, AWS provides the storage component of the
KMI, and you provide the management layer of the KMI.

• AWS controls the encryption method and the entire KMI.

Figure 1: Encryption models in AWS

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 4 of 20

Model A: You control the encryption method and the
entire KMI
In this model, you use your own KMI to generate, store, and manage access to keys as
well as control all encryption methods in your applications. This physical location of the
KMI and the encryption method can be outside of AWS or in an Amazon Elastic
Compute Cloud (Amazon EC2) instance you own. The encryption method can be a
combination of open-source tools, AWS SDKs, or third-party software and/or hardware.
The important security property of this model is that you have full control over the
encryption keys and the execution environment that utilizes those keys in the encryption
code. AWS has no access to your keys and cannot perform encryption or decryption on
your behalf. You are responsible for the proper storage, management, and use of keys
to ensure the confidentiality, integrity, and availability of your data. Data can be
encrypted in AWS services as described in the following sections.

Amazon S3
You can encrypt data using any encryption method you want, and then upload the
encrypted data using the Amazon Simple Storage Service (Amazon S3) API. Most
common application languages include cryptographic libraries that allow you to perform
encryption in your applications. Two commonly available open source tools are Bouncy
Castle and OpenSSL. After you have encrypted an object and safely stored the key in
your KMI, the encrypted object can be uploaded to Amazon S3 directly with a PUT
request. To decrypt this data, you issue the GET request in the Amazon S3 API and
then pass the encrypted data to your local application for decryption.

AWS provides an alternative to these open source encryption tools with the Amazon S3
encryption client, which is an open source set of APIs embedded into the AWS SDKs.
This client lets you supply a key from your KMI that can be used to encrypt or decrypt
your data as part of the call to Amazon S3. The SDK leverages Java Cryptography
Extensions (JCEs) in your application to take your symmetric or asymmetric key as input
and encrypt the object prior to uploading to Amazon S3. The process is reversed when
the SDK is used to retrieve an object. The downloaded encrypted object from Amazon
S3 is passed to the client along with the key from your KMI. The underlying JCE in your
application decrypts the object.

The Amazon S3 encryption client is integrated into the AWS SDKs for Java, Ruby, and
.NET, and it provides a transparent drop-in replacement for any cryptographic code you
might have used previously with your application that interacts with Amazon S3.
Although AWS provides the encryption method, you control the security of your data
because you control the keys for that engine to use. If you’re using the Amazon S3
encryption client on-premises, AWS never has access to your keys or unencrypted data.
If you’re using the client in an application running in Amazon EC2, a best practice is to
pass keys to the client using secure transport (e.g., Secure Sockets Layer (SSL) or
Secure Shell (SSH)) from your KMI to help ensure confidentiality. For more information,

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 5 of 20

see the AWS SDK for Java documentation and Using Client-Side Encryption in the
Amazon S3 Developer Guide. Figure 2 shows how these two methods of client-side
encryption work for Amazon S3 data.

	

Figure 2: Amazon S3 client-side encryption from on-premises system or from within your
Amazon EC2 application	

There are third-party solutions available that can simplify the key management process
when encrypting data to Amazon S3. CloudBerry Explorer PRO for Amazon S3 and
CloudBerry Backup both offer a client-side encryption option that applies a user-defined
password to the encryption scheme to protect files stored on Amazon S3. For
programmatic encryption needs, SafeNet ProtectApp for Java integrates with the
SafeNet KeySecure KMI to provide client-side encryption in your application. The
KeySecure KMI provides secure key storage and policy enforcement for keys that are
passed to the ProtectApp Java client compatible with the AWS SDK. The KeySecure
KMI can run as an on-premises appliance or as a virtual appliance in Amazon EC2.
Figure 3 shows how the SafeNet solution can be used to encrypt data stored on Amazon
S3.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 6 of 20

Figure 3: Amazon S3 client-side encryption from on-premises system or from within your
application in Amazon EC2 using SafeNet ProtectApp and SafeNet KeySecure KMI

Amazon EBS
Amazon Elastic Block Store (Amazon EBS) provides block-level storage volumes for use
with Amazon EC2 instances. Amazon EBS volumes are network-attached, and persist
independently from the life of an instance.

Because Amazon EBS volumes are presented to an instance as a block device, you can
leverage most standard encryption tools for file system-level or block-level encryption.
Some common block-level open source encryption solutions for Linux are Loop-AES,
dm-crypt (with or without) LUKS, and TrueCrypt. Each of these operates below the file
system layer using kernel space device drivers to perform encryption and decryption of
data. These tools are useful when you want all data written to a volume to be encrypted
regardless of what directory the data is stored in.

Another option would be to use file system-level encryption, which works by stacking an
encrypted file system on top of an existing file system. This method is typically used to
encrypt a specific directory. eCryptfs and EncFs are two Linux-based open source
examples of file system-level encryption tools.

These solutions require you to provide keys, either manually or from your KMI. An
important caveat with both block-level and file system-level encryption tools is that they
can only be used to encrypt data volumes that are not Amazon EBS boot volumes. This
is because these tools don’t allow you to automatically make a trusted key available to
the boot volume at startup.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 7 of 20

Encrypting Amazon EBS volumes attached to Windows instances can be done using
BitLocker or Encrypted File System (EFS) as well as open source applications like
TrueCrypt. In either case, you still need to provide keys to these encryption methods and
you can only encrypt data volumes.

There are AWS partner solutions that can help automate the process of encrypting
Amazon EBS volumes as well as supplying and protecting the necessary keys. Trend
Micro SecureCloud and SafeNet ProtectV are two such partner products that encrypt
Amazon EBS volumes and include a KMI. Both products are able to encrypt boot
volumes in addition to data volumes. These solutions also support use cases where
Amazon EBS volumes attach to auto-scaled Amazon EC2 instances. Figure 4 shows
how the SafeNet and Trend Micro solutions can be used to encrypt data stored on
Amazon EBS using keys managed on-premises, via software as a service (SaaS), or in
software running on Amazon EC2.

Figure 4: Encryption in Amazon EBS using SafeNet ProtectV or Trend Micro SecureCloud

AWS Storage Gateway
AWS Storage Gateway is a service connecting an on-premises software appliance with
Amazon S3. It can be exposed to your network as an iSCSI disk to facilitate copying
data from other sources. Data on disk volumes attached to the AWS Storage Gateway
will be automatically uploaded to Amazon S3 based on policy. You can encrypt source
data on the disk volumes using any of the file encryption methods described previously
(e.g., Bouncy Castle or OpenSSL) before it reaches the disk. You can also use a block-
level encryption tool (e.g., BitLocker or dm-crypt/LUKS) on the iSCSI endpoint that AWS
Storage Gateway exposes to encrypt all data on the disk volume. Alternatively, two AWS
partner solutions, Trend Micro SecureCloud and SafeNet StorageSecure, can perform

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 8 of 20

both the encryption and key management for the iSCSI disk volume exposed by AWS
Storage Gateway. These partners provide an easy, check box solution to both encrypt
data and manage the necessary keys that is similar in design to how their Amazon EBS
encryption solutions work.

Amazon RDS
Encryption of data in Amazon Relational Database Service (Amazon RDS) using client-
side technology requires you to consider how you want data queries to work. Because
Amazon RDS doesn’t expose the attached disk it uses for data storage, transparent disk
encryption using techniques described in the previous Amazon EBS section are not
available to you. However, selective encryption of database fields in your application can
be done using any of the standard encryption libraries mentioned previously (e.g.,
Bouncy Castle, OpenSSL) before the data is passed to your Amazon RDS instance.
While this specific field data would not easily support range queries in the database,
queries based on unencrypted fields can still return useful results. The encrypted fields
of the returned results can be decrypted by your local application for presentation. To
support more efficient querying of encrypted data, you can store a keyed-hash message
authentication code (HMAC) of an encrypted field in your schema and you can supply a
key for the hash function. Subsequent queries of protected fields that contain the HMAC
of the data being sought would not disclose the plaintext values in the query. This allows
the database to perform a query against the encrypted data in your database without
disclosing the plaintext values in the query. Any of the encryption methods you choose
must be performed on your own application instance before data is sent to the Amazon
RDS instance.

CipherCloud and Voltage Security are two AWS partners with solutions that simplify
protecting the confidentiality of data in Amazon RDS. Both vendors have the ability to
encrypt data using format-preserving encryption (FPE) that allows ciphertext to be
inserted into the database without breaking the schema. They also support tokenization
options with integrated lookup tables. In either case your data is encrypted or tokenized
in your application before being written to the Amazon RDS instance. These partners
provide options to index and search against databases with encrypted or tokenized
fields. The unencrypted or untokenized data can be read from the database by other
applications without needing to distribute keys or mapping tables to those applications to
unlock the encrypted or tokenized fields. For example, you could move data from
Amazon RDS to the Amazon Redshift data warehousing solution and run queries
against the non-sensitive fields, while keeping sensitive fields encrypted or tokenized.
Figure 5 shows how the Voltage solution can be used within Amazon EC2 to encrypt
data before being written to the Amazon RDS instance. The encryption keys are pulled
from the Voltage KMI located in your data center by the Voltage Security client running
on your applications on Amazon EC2.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 9 of 20

Figure 5: Encrypting data in your Amazon EC2 applications before writing to Amazon RDS
using Voltage SecureData

CipherCloud for Amazon Web Services is a solution that works in a way that is similar to
the way the Voltage Security client works for applications running in Amazon EC2 that
need to send encrypted data to and from Amazon RDS. CipherCloud provides a JDBC
driver that can be installed on the application, regardless of whether it’s running in
Amazon EC2 or in your data center. In addition, the CipherCloud for Any App solution
can be deployed as an inline gateway to intercept data as it is being sent to and from
your Amazon RDS instance. Figure 6 shows how the CipherCloud solution can be
deployed this way to encrypt or tokenize data leaving your data center before being
written to the Amazon RDS instance.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 10 of 20

Figure 6: Encrypting data in your data center before writing to Amazon RDS using
CipherCloud Encryption Gateway

Amazon EMR
Amazon Elastic MapReduce (Amazon EMR) provides an easy-to-use Hadoop
implementation running on Amazon EC2. Performing encryption throughout the
MapReduce operation involves encryption and key management at four distinct points:

1. The source data

2. Hadoop Distributed File System (HDFS)

3. Shuffle phase

4. Output data

If the source data is not encrypted, then this step can be skipped, and SSL can be used
to help protect data in transit to the Amazon EMR cluster. If the source data is
encrypted, then your MapReduce job will need to be able to decrypt the data as it is
ingested. If your job flow uses Java and the source data is in Amazon S3, you can use
any of the client decryption methods described in the previous Amazon S3 sections.

The storage used for the HDFS mount point is the ephemeral storage of the cluster
nodes. Depending on the instance type there might be more than one mount. Encrypting
these mount points requires the use of an Amazon EMR bootstrap script that will do the
following:

• Stop the Hadoop service

• Install a file system encryption tool on the instance

• Create an encrypted directory to mount the encrypted file system on top of the
existing mount points

• Restart the Hadoop service	

	

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 11 of 20

You could, for example, perform these steps using the open source eCryptfs package
and an ephemeral key generated in your code on each of the HDFS mounts. You don’t
need to worry about persistent storage of this encryption key, because the data it
encrypts does not persist beyond the life of the HDFS instance.

The shuffle phase involves passing data between cluster nodes before the reduce step.
To encrypt this data in transit, you can enable SSL with a configure Hadoop bootstrap
option when you create your cluster.

Finally, to enable encryption of the output data, your MapReduce job should encrypt the
output using a key sourced from your KMI. This data can be sent to Amazon S3 for
storage in encrypted form.

Model B: You control the encryption method, AWS
provides the KMI storage component, and you
provide the KMI management layer
This model is similar to Model A in that you manage the encryption method, but it differs
from Model A in that the keys are stored in an AWS CloudHSM appliance rather than in
a key storage system that you manage on-premises. While the keys are stored in the
AWS environment, they are inaccessible to any employee at AWS. This is because only
you have access to the cryptographic partitions within the dedicated HSM to use the
keys. The AWS CloudHSM appliance has both physical and logical tamper detection
and response mechanisms that trigger zeroization of the appliance. Zeroization erases
the HSM’s volatile memory where any keys in the process of being decrypted were
stored and destroys the key that encrypts stored objects, effectively causing all keys on
the HSM to be inaccessible and unrecoverable.

When you determine whether using AWS CloudHSM is appropriate for your deployment,
it is important to understand the role that an HSM plays in encrypting data. An HSM can
be used to generate and store key material and can perform encryption and decryption
operations, but it does not perform any key lifecycle management functions (e.g., access
control policy, key rotation). This means that a compatible KMI might be needed in
addition to the AWS CloudHSM appliance before deploying your application. The KMI
you provide can be deployed either on-premises or within Amazon EC2 and can
communicate to the AWS CloudHSM instance securely over SSL to help protect data
and encryption keys. Because the AWS CloudHSM service uses SafeNet Luna
appliances, any key management server that supports the SafeNet Luna platform can
also be used with AWS CloudHSM. Any of the encryption options described for AWS
services in Model A can work with AWS CloudHSM as long as the solution supports the
SafeNet Luna platform. This allows you to run your KMI within the AWS compute
environment while maintaining a root of trust in a hardware appliance to which only you
have access.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 12 of 20

Applications must be able to access your AWS CloudHSM appliance in an Amazon
Virtual Private Cloud (Amazon VPC). The AWS CloudHSM client, provided by SafeNet,
interacts with the AWS CloudHSM appliance to encrypt data from your application.
Encrypted data can then be sent to any AWS service for storage. Database, disk
volume, and file encryption applications can all be supported with AWS CloudHSM and
your custom application. Figure 7 shows how the AWS CloudHSM solution works with
your applications running on Amazon EC2 in an Amazon VPC.

Figure 7: AWS CloudHSM deployed in Amazon VPC

To achieve the highest availability and durability of keys in your AWS CloudHSM
appliance, we recommend deploying multiple AWS CloudHSM applications across
Availability Zones or in conjunction with an on-premises SafeNet Luna appliance that
you manage. The SafeNet Luna solution supports secure replication of keying material
across appliances. For more information, see AWS CloudHSM on the AWS website.

Model C: AWS controls the encryption method and
the entire KMI
In this model, AWS provides server-side encryption of your data, transparently managing
the encryption method and the keys.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 13 of 20

AWS Key Management Service (KMS)
AWS Key Management Service (KMS) is a managed encryption service that lets you
provision and use keys to encrypt your data in AWS services and your applications.
Master keys in AWS KMS are used in a fashion similar to the way master keys in an
HSM are used. After masters key are created, they are designed to never be exported
from the service. Data can be sent into the service to be encrypted or decrypted under a
specific master key under you account. This design gives you centralized control over
who can access your master keys to encrypt and decrypt data, and it gives you the
ability to audit this access. AWS KMS is natively integrated with other AWS services
including Amazon EBS, Amazon S3, and Amazon Redshift to simplify encryption of your
data within those services. AWS SDKs are integrated with AWS KMS to let you encrypt
data in your custom applications. For applications that need to encrypt data, AWS KMS
provides global availability, low latency, and a high level of durability for your keys. Visit
https://aws.amazon.com/kms/ or download the KMS Cryptographic Details White Paper
to learn more.

AWS KMS and other services that encrypt your data directly use a method called
envelope encryption to provide a balance between performance and security. Figure 8
describes envelope encryption.

1. A	
 data	
 key	
 is	
 generated	
 by	
 the	
 AWS	
 service	
 at	
 the	
 time	
 you	
 request	
 your	
 data	
 to	
 be	

encrypted.	

	

	

2. Data	
 key	
 is	
 used	
 to	
 encrypt	
 your	
 data.	
 	

	

	

3. The	
 data	
 key	
 is	
 then	
 encrypted	
 with	
 a	
 key-­‐encrypting	
 key	
 unique	
 to	
 the	
 service	
 storing	

your	
 data.	
 	

	

	

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 14 of 20

4. The	
 encrypted	
 data	
 key	
 and	
 the	
 encrypted	
 data	
 are	
 then	
 stored	
 by	
 the	
 AWS	
 storage	

service	
 on	
 your	
 behalf.	

	

Figure 8: Envelope encryption

The key-encrypting keys used to encrypt data keys are stored and managed separately
from the data and the data keys. Strict access controls are placed on the encryption
keys designed to prevent unauthorized use by AWS employees. When you need access
to your plaintext data, this process is reversed. The encrypted data key is decrypted
using the key-encrypting key; the data key is then used to decrypt your data.

The following AWS services offer a variety of encryption features to choose from.

Amazon S3
There are three ways of encrypting your data in Amazon S3 using server-side
encryption.

1. Server-side encryption: You can set an API flag, or check a box in the AWS
Management Console, to have data encrypted before it is written to disk in Amazon
S3. Each object is encrypted with a unique data key. As an additional safeguard, this
key is encrypted with a periodically rotated master key managed by Amazon S3.
Amazon S3 server-side encryption uses 256-bit Advanced Encryption Standard
(AES) keys for both object and master keys. This feature is offered at no additional
cost beyond what you pay for using Amazon S3.

2. Server-side encryption using customer provided keys: You can use your own
encryption key while uploading an object to Amazon S3. This encryption key is used
by Amazon S3 to encrypt your data using AES-256. After the object is encrypted, the
encryption key you supplied is deleted from the Amazon S3 system that used it to
protect your data. When you retrieve this object from Amazon S3, you must provide
the same encryption key in your request. Amazon S3 verifies that the encryption key
matches, decrypts the object, and returns the object to you. This feature is offered at
no additional cost beyond what you pay for using Amazon S3.

3. Server-side encryption using KMS: You can encrypt your data in Amazon S3 by
defining an AWS KMS master key within your account that you want to use to
encrypt the unique object key (referred to as a data key in figure 8) that will ultimately
encrypt your object. When you upload your object, a request is sent to KMS to create
an object key. KMS generates this object key and encrypts it using the master key

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 15 of 20

that you specified earlier; KMS then returns this encrypted object key along with the
plaintext object key to Amazon S3. The Amazon S3 web server encrypts your object
using the plaintext object key and stores the now encrypted object (with the
encrypted object key) and deletes the plaintext object key from memory. To retrieve
this encrypted object, Amazon S3 sends the encrypted object key to AWS KMS.
AWS KMS decrypts the object key using the correct master key and returns the
decrypted (plaintext) object key to S3. With the plaintext object key, S3 decrypts the
encrypted object and returns it to you. For pricing of this option please refer to the
AWS Key Management Service pricing page.

Amazon EBS
When creating a volume in Amazon EBS, you can choose to encrypt it using an AWS
KMS master key within your account that will encrypt the unique volume key that will
ultimately encrypt your EBS volume. After you make your selection, the Amazon EC2
server sends an authenticated request to AWS KMS to create a volume key. AWS KMS
generates this volume key, encrypts it using the master key, and returns the plaintext
volume key and the encrypted volume key to the Amazon EC2 server. The plaintext
volume key is stored in memory to encrypt and decrypt all data going to and from your
attached EBS volume. When the encrypted volume (or any encrypted snapshots derived
from that volume) needs to be re-attached to an instance, a call is made to AWS KMS to
decrypt the encrypted volume key. AWS KMS decrypts this encrypted volume key with
the correct master key and returns the decrypted volume key to Amazon EC2.

Amazon Glacier
Before it’s written to disk, data are always automatically encrypted using 256-bit AES
keys unique to the Amazon Glacier service that are stored in separate systems under
AWS control. This feature is offered at no additional cost beyond what you pay for using
Amazon Glacier.

AWS Storage Gateway
The AWS Storage Gateway transfers your data to AWS over SSL and stores data
encrypted at rest in Amazon S3 or Amazon Glacier using their respective server side
encryption schemes.

Amazon EMR
S3DistCp is an Amazon EMR feature that moves large amounts of data from Amazon
S3 into HDFS, from HDFS to Amazon S3, and between Amazon S3 buckets. S3DistCp
supports the ability to request Amazon S3 to use server-side encryption when it writes
EMR data to an Amazon S3 bucket you manage. This feature is offered at no additional
cost beyond what you pay for using Amazon S3 to store your Amazon EMR data.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 16 of 20

Oracle on Amazon RDS
You can choose to license the Oracle Advanced Security option for Oracle on Amazon
RDS to leverage the native Transparent Data Encryption (TDE) and Native Network
Encryption (NNE) features. The Oracle encryption module creates data and key-
encrypting keys to encrypt the database. The key-encrypting keys specific to your Oracle
instance on Amazon RDS are themselves encrypted by a periodically-rotated 256-bit
AES master key. This master key is unique to the Amazon RDS service and is stored in
separate systems under AWS control.

Microsoft SQL Server on Amazon RDS
You can choose to provision Transparent Data Encryption (TDE) for Microsoft SQL
Server on Amazon RDS. The SQL Server encryption module creates data and key-
encrypting keys to encrypt the database. The key-encrypting keys specific to your SQL
Server instance on Amazon RDS are themselves encrypted by a periodically-rotated,
regional 256-bit AES master key. This master key is unique to the Amazon RDS service
and is stored in separate systems under AWS control. This feature is offered at no
additional cost beyond what you pay for using Microsoft SQL Server on Amazon RDS.

Amazon Redshift
When creating an Amazon Redshift cluster, you can optionally choose to encrypt all data
in user-created tables. There are three options to choose from for server-side encryption
of an Amazon Redshift cluster.

1. In the first option, data blocks (included backups) are encrypted using random 256-
bit AES keys. These keys are themselves encrypted using a random 256-bit AES
database key. This database key is encrypted by a 256-bit AES cluster master key
that is unique to your cluster. The cluster master key is encrypted with a periodically-
rotated regional master key unique to the Amazon Redshift service that is stored in
separate systems under AWS control. This feature is offered at no additional cost
beyond what you pay for using Amazon Redshift.

2. With the second option, the 256-bit AES cluster master key used to encrypt your
database keys is generated in your AWS CloudHSM or by using a SafeNet Luna
HSM appliance on-premises. This cluster master key is then encrypted by a master
key that never leaves your HSM. When the Amazon Redshift cluster starts up, the
cluster master key is decrypted in your HSM and used to decrypt the database key,
which is sent to the Amazon Redshift hosts to reside only in memory for the life of
the cluster. If the cluster ever restarts, the cluster master key is again retrieved from
your HSM—it is never stored on disk in plaintext. This option lets you more tightly
control the hierarchy and lifecycle of the keys used to encrypt your data. This feature
is offered at no additional cost beyond what you pay for using Amazon Redshift (and
AWS CloudHSM if you choose that option for storing keys).

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 17 of 20

3. In the third option, the 256-bit AES cluster master key used to encrypt your database
keys is generated in AWS KMS. This cluster master key is then encrypted by a
master key within AWS KMS. When the Amazon Redshift cluster starts up, the
cluster master key is decrypted in AWS KMS and used to decrypt the database key,
which is sent to the Amazon Redshift hosts to reside only in memory for the life of
the cluster. If the cluster ever restarts, the cluster master key is again retrieved from
the hardened security appliance in AWS KMS—it is never stored on disk in plaintext.
This option lets you define fine-grained controls over the access and usage of your
master keys and audit these controls through AWS CloudTrail. For pricing of this
option please refer to the AWS Key Management Service pricing page.

In addition to encrypting data generated within your Amazon Redshift cluster, you can
also load encrypted data into Amazon Redshift from Amazon S3 that was previously
encrypted using the Amazon S3 Encryption Client and keys you provide. Amazon
Redshift supports the decryption and re-encryption of data going between Amazon S3
and Amazon Redshift to protect the full lifecycle of your data.

These server-side encryption features across multiple services in AWS enable you to
easily encrypt your data simply by making a configuration setting in the AWS
Management Console, or by making a CLI, or API, request for the given AWS service.
The authorized use of encryption keys is automatically and securely managed by AWS.
Because unauthorized access to those keys could lead to the disclosure of your data,
we have built systems and processes with strong access controls that minimize the
chance of unauthorized access and had these systems verified by third-party audits to
achieve security certifications including SOC 1, 2, and 3, PCI-DSS, and FedRAMP.

Conclusion
We have presented three different models for how encryption keys are managed and
where they are used. If you take all responsibility for the encryption method and the KMI,
you can have granular control over how your applications encrypt data. However, that
granular control comes at a cost—both in terms of deployment effort and an inability to
have AWS services tightly integrate with your applications’ encryption methods. As an
alternative, you can choose a managed service that enables easier deployment and
tighter integration with AWS cloud services. This option offers check box encryption for
several services that store your data, control over your own keys, secured storage for
your keys, and auditability on all data access attempts.

Table 1 summarizes the available options for encrypting data at rest across AWS. We
recommend that you determine which encryption and key management model is most
appropriate for your data classifications in the context of the AWS service you are using.

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 18 of 20

 Encryption Method and KMI
 Model A Model B Model C

AWS Service
Client-Side Solutions

Using Customer-
Managed Keys

Client-Side Partner
Solutions with KMI

for Customer-
Managed Keys

Client-Side Solutions
for Customer-

Managed Keys in
AWS CloudHSM

Server-Side
Encryption Using

AWS-Managed Keys

Amazon S3 Bouncy Castle,
OpenSSL, Amazon S3
encryption client in the
AWS SDK for Java

SafeNet
ProtectApp for Java

Custom Amazon
VPC-EC2
application
integrated with AWS
CloudHSM client

Amazon S3 server-
side encryption,
server-side encryption
with customer
provided keys, or
server-side encryption
with AWS Key
Management Service

Amazon Glacier N/A N/A Custom Amazon
VPC-EC2
application
integrated with AWS
CloudHSM client

All data is
automatically
encrypted using
server-side encryption

AWS Storage
Gateway

Linux Block Level:
- Loop-AES, dm-crypt
(with or without
LUKS), and
TrueCrypt
Linux File System:
- eCryptfs and EncFs
Windows Block Level:
-TrueCrypt
Windows File System:
- BitLocker

Trend Micro
SecureCloud,
SafeNet
StorageSecure

N/A Amazon S3 server-
side encryption

Amazon EBS Linux Block Level:
- Loop-AES, dm-
crypt+LUKS and
TrueCrypt
Linux File System:
- eCryptfs and EncFs
Windows Block Level:
-TrueCrypt
Windows File System:
- BitLocker, EFS

Trend Micro
SecureCloud,
SafeNet ProtectV

Custom Amazon
VPC-EC2
application
integrated with AWS
CloudHSM client

Amazon EBS
Encryption with AWS
Key Management
Service

Oracle on Amazon
RDS

Bouncy Castle,
OpenSSL

CipherCloud
Database Gateway
and Voltage
SecureData

Custom Amazon
VPC-EC2
application
integrated with AWS
CloudHSM client

Transparent Data
Encryption (TDE) and
Native Network
Encryption (NNE) with
optional Oracle
Advanced Security
license

TDE for Microsoft
SQL Server

Microsoft SQL
Server on Amazon
RDS

Bouncy Castle,
OpenSSL

CipherCloud
Database Gateway
and Voltage
SecureData

Custom Amazon
VPC-EC2
application
integrated with AWS
CloudHSM client

N/A

Amazon Redshift N/A N/A Encrypted Amazon
Redshift clusters
with your master key
managed in AWS
CloudHSM or on-
premises Safenet
Luna HSM

Encrypted Amazon
Redshift clusters with
AWS-managed
master key

Amazon EMR eCryptfs Custom Amazon
VPC-EC2
application
integrated with AWS
CloudHSM client

S3DistCp using
Amazon S3 server-
side encryption to
protect persistently
stored data

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 19 of 20

Table 1: Summary of data at rest encryption options

References and Further Reading
• Bouncy Castle Java crypto library

http://www.bouncycastle.org/

• OpenSSL crypto library
http://www.openssl.org/

• CloudBerry Explorer PRO for Amazon S3 encryption
http://www.cloudberrylab.com/amazon-s3-explorer-pro-cloudfront-IAM.aspx

• Client-Side Data Encryption with the AWS SDK for Java and Amazon S3
http://aws.amazon.com/articles/2850096021478074

• SafeNet encryption products for Amazon S3, Amazon EBS, and AWS CloudHSM
http://www.safenet-inc.com/

• Trend Micro SecureCloud
http://www.trendmicro.com/us/enterprise/cloud-solutions/secure-cloud/index.html

• CipherCloud for AWS and CipherCloud for Any App
http://www.ciphercloud.com/

• Voltage Security SecureData Enterprise
http://www.voltage.com/products/securedata-enterprise/

• AWS CloudHSM
https://aws.amazon.com/cloudhsm/

• AWS Key Management Service
https://aws.amazon.com/kms/

• Key Management Service Cryptographic Details White Paper
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

• Amazon EMR S3DistCp to encrypt data in Amazon S3
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEM
R_s3distcp.html

• Transparent Data Encryption for Oracle on Amazon RDS
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.Oracle.Op
tions.html#Appendix.Oracle.Options.AdvSecurity

Archived

Amazon Web Services – Encrypting Data at Rest in AWS November 2014

Page 20 of 20

• Transparent Data Encryption for Microsoft SQL Server on Amazon RDS
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SQLServer.h
tml#SQLServer.Concepts.General.Options

• Amazon Redshift encryption
http://aws.amazon.com/redshift/faqs/#0210

• AWS Security Blog
http://blogs.aws.amazon.com/security

Document Revisions
November 2013: First Version

November 2014:

• Introduced section on AWS Key Management Service (KMS) and

Amazon EBS in Model C

• Updated sections in Model C for Amazon S3, Amazon Redshift

	Blank Page
	Blank Page

