Accessing a private Amazon MWAA
environment using federated
identities

Technical Guide

February 8, 2022

dWS
N <

BT
S

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current
AWS product offerings and practices, which are subject to change without notice, and (c) does
not create any commitments or assurances from AWS and its affiliates, suppliers or licensors.
AWS products or services are provided “as is” without warranties, representations, or
conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to
its customers are controlled by AWS agreements, and this document is not part of, nor does it
modify, any agreement between AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Before You Begin / CONSIAEIAtIONSccveeieurieieieiecieeeeeieee ettt et ete e e aeeeete e e eareeeesteeeenseeeneeesnneeeans 1
L7 1) S PP OPPP 1
Amazon MWAA ENVIFONMENTiiiiiiiiiiiiiiieieiiiec it 2
= POV PRPR 2
ATCRITECTUIE OVEIVIEW ...ttt ettt ettt e et e e e bt e e et e e e abe e s esbe e s aabeesenneesnneesanee 2
INEEWOTK <.ttt e et e e st e e s s b e e e s b e e s sab e e s eab e e s ne e e sneeesnree e 3
VPC for the Amazon MWAA €nVIFONMENTccoiuiiiiiieeiiieeiee ettt st e s e s s 3
AmMazon MWAA ENVIFONMENTciiiiiiiiiiiiiiie ittt e e s nba e e s s ssna e e e 5
=T =To [U LT =S 5
Creating the Amazon MWAA €nVIFONMENTuuiiiiiiiiieieiiieee e siieee e e sar e e s s saeeee e e saaeeessnaeees 6
ALB ...t h et b e ea et b e e e a et e b et ea Rt e b e e e a bt e be e et e e be e e bt e eneeeneenneeeane 9
FA B o =T /=T [T o < 9
Using federated identities to authenticate Amazon MWAA USErScccvueeeiriiveeeeniieeeeeniiieeeenns 15
PN T 20] o TN @0 =4 1 o 1S 16
Configuring Azure AD as federated Identity ProVider.......cccccccvvveeeieiiieicciirreeeee e 17
Configuring Cognito to use the external [dPuviiiiii i 27
Configuring Cognito authentication 0N the ALBcooooiiiieeiiciiee e 30
Authenticating and authorizing AirflOW USErScoccuiiii i e 32
Airflow roles and AmMazon MWAA ...t s s 32
Authentication/authorization Lambda fUNCEIONeeeeeee e 33
Finishing the ALB CONfIGUIatioNccoccuiiiiiiiiiiii ettt s e e s 50
Y10l UL 1 4V PPPPPPPPRS 53
(60T 3Tl (V11T o PO P PSSP 53
CONTIIDULOTS ..ttt ettt e e bt e e b b e e e bt e e et b e e eabbeesabbeesaneeseabeeesnneenans 53

D Lo Yol Ul 0 a T<] a1 2NV L0 o N 54

Many organizations use 3rd party identity providers such as Azure Active Directory (Azure AD)
and Okta to grant their users access to internal resources. Also, unless you have a specific
reason, it is a best practice to avoid exposing application endpoints directly on the internet.
Amazon Managed Workflows for Apache Airflow (MWAA) is no exception, and both
organizations and users want to continue using the same authentication and authorization
mechanism to access their private Amazon MWAA environments. This step-by-step guide
explains how to build a solution that allows using federated identities to seamlessly access
private Amazon MWAA environments securely.

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Amazon MWAA offers two network access modes for accessing the Airflow Web User Interface
(Ul) in your environments: public and private.

In both cases, accessing the Airflow Web Ul of an Amazon MWAA environment requires
authentication via the AWS Management Console. Additionally, if you use the private network
access mode, you have to route your traffic over private subnets in your VPC, which means you
need a way to reach your VPC from the client you use to access the web application, such as a
site-to-site VPN, AWS Direct Connect, or AWS Client VPN.

Depending on your security and connectivity requirements, those options might not be viable.
For example, you might want to use AWS Web Application Firewall (WAF) to inspect traffic
addressed to the web Ul for anomalous patterns or apply geofencing, or you might not want to
provide AWS Management Console access to all the Airflow users in your organization.
Furthermore, many customers would like to use their existing Identity Providers (IdP) to access
their Amazon MWAA environments.

In this guide, you find detailed instructions to set up a solution to provide access to an
environment deployed in private network access mode and authenticate users using a
federated identity without the need to have permissions to access the AWS Management
Console.

This technical guide uses the AWS Command Line Interface (CLI), the AWS Management
Console, and an IAM role with appropriate permissions. You can learn how to install and
configure the AWS CLI by reviewing Getting started with the AWS CLI and Configuring the AWS
CLI.

To make it simpler to reproduce, the steps and CLI commands in the guide use given names for
resources such as an Application Load Balancer (ALB) or an Amazon Cognito user pool. Feel free
to change them at your convenience.

The main cost factors for the solution described in this guide fall on the Amazon MWAA
environment and the ALB. This cost analysis focuses only on the fixed hourly usage of the
deployed components and considers 744 hours (31 days x 24 hours / day) in a month. There are
other costs that depend on usage, such as Amazon MWAA additional worker and scheduled
instances, and ALB LCUs (Load Balancer Units).

You can find more details on the Amazon MWAA pricing page and Application Load Balancer

pricing page.

aws

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://aws.amazon.com/managed-workflows-for-apache-airflow/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Amazon MWAA Environment

This technical guide uses a Small environment instance, which in the Europe (Ireland) AWS
Region is priced at $0.49 per hour. That gives a monthly cost of $364.56.

ALB

Consider one ALB running for the entire month and that there is some traffic every hour that
falls within the scope of a single LCU. The price for ALB in the Europe (Ireland) AWS Region is
$0.0252 per ALB-hour (or partial hour), and $0.008 per LCU-hour (or partial hour). This amounts
to $24.7008 per month.

Before jumping into the solution details, it’s important to understand what goes under the
hood when you create an Amazon MWAA environment with private access mode. In a nutshell,
Amazon MWAA uses its own VPC and resources to host the Airflow Web Server, and creates a
VPC interface endpoint. This endpoint is reachable within your VPC from the selected subnets
by deploying an Elastic Network Interface (ENI) in each of them. Each of those ENIs have a
binding to an IP address from each of your subnets.
You also need to understand that, when you authenticate to the Airflow Ul, Amazon MWAA
generates a web login token for the environment. This token authorizes access to the
environment with an Airflow role that is based on the permissions granted to the IAM principal
you use to log in to the AWS Management Console.
The proposed solution is based in six components:

e A VPC with four subnets (two public and two private).

e An Amazon MWAA environment with private access to the Airflow Web Server.
e A public ALB that exposes the Ul and authenticates users via Amazon Cognito.

e An Amazon Cognito user pool that uses a federated login via Azure AD and provides
the federated user claims to an authorization Lambda function.

e A lambda function that authorizes access to the Amazon MWAA environment. For that
it assumes an IAM role and generates the Amazon MWAA web login token on behalf of
the user and handles the logout process.

e Asetof IAM roles that grant access to the resources.

aws

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

@ Customer VPC

? ; | !! Internet
Public subnet

User's browser
A

; ’] oIDC
N N i
@ @ SR D Application Load
© Balancer

Public subnet
&

AWS IAM

!
i Elastic network Elastic network
interface interface

Service VPC

!
?

Airflow Web Server

Figure 1 — Architecture overview

VPC for the Amazon MWAA environment
Amazon MWAA requires customers to provide a VPC with at least two subnets to deploy an
environment.
Follow the steps in the Create the VPC network Amazon MWAA documentation to create a VPC
with internet access. The documentation guides you on the process to deploy the resources
using an AWS CloudFormation template. This template deploys:

e A VPC with a pair of public and private subnets spread across two Availability Zones.

e Aninternet gateway, with a default route on the public subnets.

e A pair of NAT gateways (one in each Availability Zone), and default routes for them in
the private subnets.

o Aself-referencing security group that allows all traffic. This will be used by Amazon
MWAA to communicate between internal resources.

If you require the traffic between your Amazon MWAA environment and other resources to go
over private networks, you should use Option three: Creating an Amazon VPC network without

aws

https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-create.html#vpc-create-template-private-or-public
https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-create.html#vpc-create-template-private-only

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Internet access. In that case, you will also need to deploy a pair of public subnets in the VPC to
deploy the ALB.

After the deployment has completed, you should have the following portion of the architecture
(note that, for clarity, security groups are not depicted):

Customer VPC - 10.192.0.0/16

Availability Zone A Availability Zone B

. Public subnet - D . Public subnet -

10.192.10.0/24 m 10.192.11.0/24
0.0.0.0/0 > C@
Public route Internet|gateway
NAT gateway NAT gateway

. Private subnet -

10.192.20.0/24

. Private subnet -

10.192.21.0/24

[§0.0.0/0 —

172.16.1.0
172.16.2.0

[0 5 .0.0/0 —

172.16.1.0
172.16.2.0

Private route
table

Private route
table

"
@ @

Figure 2 — Network architecture
For the next step, you will need the identifiers of some of the resources you have created so
far. You can find those identifiers in the Outputs tab of the CloudFormation template you
deployed in the previous step (see Figure 3).

aws

https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-create.html#vpc-create-template-private-only

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

CloudFormatior Stacks mwaa-private-environment

& Stacks (5) c | mwaa-private-environment Detete | [Update | [Stackactions v | [Crestestack
Q Stack info Events Resources Jutput Parameters Template T
Active ¥ @ View nested Rl
1
Outputs (8) | c
o
Q :

Key - Value Description Export name

A reference to the private subnet in the 15t Availability

PrivateSubnet1 subnet-
Zone

Areference ta the private subnet in the 2nd Availability

PrivateSubnet2 subnet-
Zone

bnet- bnet-
PrivateSubnets subne St Alist of the private subnets

A reference to the public subnet in the 1st Availability

PublicSubnet1 subnet-
Zone

A reference to the public subnet in the 2nd Availability

PublicSubnet2 subnet-
Zone

PublicSubnets ubnat. boubnet- Alist of the public subnets

SecurityGrouplngress SecurityGrouplngress Security group with self-referencing inbound rule

VPC vpc- Areference to the created VPC

Figure 3 — AWS CloudFormation Outputs

Prerequisites

Before deploying the environment, you’ll have to create another resource that Amazon MWAA
requires: an Amazon S3 bucket. Amazon MWAA will use this S3 bucket to store its Direct Acyclic
Graphs (DAGs) code and supporting files, such as plugins.

Create a bucket in the same region where you deployed your VPC and, as per Amazon MWAA
requirements, enable blocking public access and versioning with the following AWS CLI
commands:

aws s3 mb --region your-region s3://your-bucket-name
aws s3apil put-bucket-versioning --region your-region \
—-bucket your-bucket-name \
——versioning-configuration Status=Enabled
aws s3api put-public-access-block --region your-region \
——bucket your-bucket-name \
——public-access-block-configuration
"BlockPublicAcls=true, IgnorePublicAcls=true,BlockPublicPolicy=true,Restrict
PublicBuckets=true"

Note: You won’t need to provide explicit access to this bucket to your end users,
Amazon MWAA manages that on your behalf. Additionally, you may want to
check your requirements for other security settings, such as encryption.

aws

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

The next section guides you through the creation of the Amazon MWAA environment using the
AWS Management Console.

Creating the Amazon MWAA environment

1. Inthe Amazon MWAA console, choose Create environment.

2. In Environment details, fill in:
a. The name for your environment,

b. An S3 URI pointing to the bucket you created earlier (e.g.: s3://your-bucket-
name), and

c. Another S3 URI that points to a path in that bucket (e.g.: s3://your-bucket—-
name/dags).

adws

https://console.aws.amazon.com/
https://console.aws.amazon.com/mwaa/home

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

aws

Environment details info

Name "5/

| vour-mwaztenvironment

Use only letters, numbers, dashes, or underscores. Max B0 characters.

Airflow version

2.0.2 (Latest) v

DAG code in Amazon S3 info

Amazon MWAA uses your Amazon S3 bucket to load your PERPS DAG folder

DAGs and supporting files. Specify your S3 bucket, and

the paths of your DAG folder, plugins.zip, and @ """ """ (3 Plugins zip file
requirements.txt. S3 bucket DR [% Requirements file

(@) Create or specify an 53 bucket to store your DAG code. The bucket name must have versioning enabled. You
can create a new bucket in the Amazon 53 console [

S3 Bucket o
The 53 bucket where your source code is stored. Enter an S3 URI or browse and select a bucket.
Q. s3://your-bucket-name X View [4 ‘ | Browse S3
Format: s3://mybucketname
DAGs folder "ol

The 53 bucket folder that contains your DAG code. Enter an S3 URI or browse and select a folder.

Q. s3://your-bucket-name/dags x ‘ View [4 ‘ | Browse S3

Format: s3://mybucketname/mydagfolder

Figure 4 — Amazon MWAA environment details (substitute the names for your own).
Leave the optional fields for the plugins and requirements files empty. You can update
them at a later stage if you need to. Choose Next.

Select the VPC that was deployed with the CloudFormation template from the drop-
down list, and make sure the two private subnets are selected. In the Web server
access section, make sure Private network is toggled.

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Networking info

Virtual private cloud (VPC)

Defines the networking infrastructure setup of your Airflow environment. An environment needs 2 private subnets in different availability
zones. To create a new VPC with private subnets, choose Create MWAA VPC. Learn more [}

C | ’ Create MWAA VPC [2

vpe-
VPC

v

Subnet 1

Private subnet for the first availability zone. Each environment occupies 2 availability zones.

subnet-
v

eu-west-1b
Private

Subnet 2
Private subnet for the second availability zone. Each environment occupies 2 availability zones.

subnet-

eu-west-1a v
Private

(@ VPC and subnet selections can't be changed after an environment is created.

Web server access

© Private network (Recommended)
Additional setup required. Your Airflow Ul can only be accessed by secure login behind your VPC. Choose this option if your Airflow Ul is
only accessed within a corporate network. IAM must be used to handle user authentication.

Public network (No additional setup)
Your Airflow Ul can be accessed by secure login over the Internet. Choose this option if your Airflow Ul is accessed outside of a
corporate network. IAM must be used to handle user authentication.

Figure 5 — Amazon MWAA networking configuration form
5. Inthe Security group(s) section, deselect the Create new security group checkbox,
and select the security group that was deployed during the VPC creation earlier.

6. Select the environment class that better suits your needs. Since this guide is for
demonstration purposes, it uses the mw1.small class.

7. Leave the remaining options as default unless you:
o Need to encrypt data with a different key than the default one.
o Want to disable Airflow task logs or select a different logging level than INFO.
o Want to set some Apache Airflow configuration options.

o Use an existing IAM role for your Amazon MWAA environment.

aws

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Pay attention to the note about IAM: “Amazon MWAA will create and assume
the execution role in IAM named MWAA-your—-environment-—name—-XXXXXX
on your behalf. This role is configured with permission to retrieve code from
your Amazon S3 bucket, use your KMS key, and send data to Amazon
CloudWatch. You must add permissions to your execution role if your Airflow
DAGs require access to any other AWS services.”

8. Select Next, make sure the configuration is correct, and choose Create environment.

After the creation process finishes, you will see your environment in the console and, as
expected, if you choose the Open Airflow Ul, you will get a time out error, as you cannot access
the Amazon MWAA private endpoints from your browser.

Amazon MWAA Environment

Airflow environments

Environments (1) C Creat i t

Q 1 ®
Name Status Created date v Airflow version Airflow Ul

@ Available Sep 15, 2021 18:29;43 (UTC+02:00) 202 Open Airflow Ul [2

Figure 6 — Airflow environment available in the Amazon MWAA console

The Amazon MWAA environment you just deployed uses private endpoints, which are not
accessible from the internet. In this section, you are going to provide access to these endpoints
using an ALB. This ALB will provide a public endpoint that users can access over the Internet.
You can protect this endpoint using several non-mutually-exclusive measures, such as using VPC
Security Groups, leveraging WebACL rules with AWS WAF, or configuring the ALB to use
Amazon Cognito to only allow authorized users through. This guide focuses on the latter,
because it is also the mechanism to authenticate the users of your environment using
federated identities.

ALB prerequisites

Security group

You will create the ALB in the same VPC you created in the step VPC for the Amazon MWAA
environment. More specifically, the ALB will use the two public subnets you deployed in that
VPC. You also need a security group that allows access on the port number 443 from the
internet.

1. Create the security group using the AWS CLI:

aws

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

aws ec2 create-security-group --region your-region \
—-—description 'Security Group for the Amazon MWAA ALB' \
-—-group-name mwaa-alb-sg \
--vpc-id your-vpc-id \
-—-tag-specifications 'ResourceType=security-

group, Tags=[{Key=Name, Value=mwaa-alb-sg}]"

The output should be similar to the following one (take note of the Groupld).

{
"GroupId": "sg-abcdef01234567890",

"Tags": [
{
"Key": "NameH,
"Value": "mwaa-alb-sg"

Note: You might want to enable Deletion protection on your load balancer to
prevent it from being deleted accidentally. You might also want to enable Access
logs for your Application Load Balancer to capture detailed information about
requests sent to your load balancer.

2. This security group needs to allow ingress TCP traffic from everywhere on ports 80 and
443. Add the necessary ingress rules (substitute the group id with the one you got as a
response in the previous command):

aws ec2 authorize-security-group-ingress --region your-region
\

--group-id your-alb-security-group-id \

-—-ip-permissions
'"[{"IpProtocol":"tcp", "FromPort":80, "ToPort":80, "IpRanges": [{
"CidrIp":"0.0.0.0/0","Description":"Access from Internet on
port 80"} 1},

{"IpProtocol":"tcp", "FromPort":443,"ToPort":443, "IpRanges": [{
"CidrIp":"0.0.0.0/0","Description":"Access from Internet on
port 443"}]1}1]"

3. Youalso need to allow access to the Amazon MWAA environment so that the ALB can
direct traffic to it. To do this, add a rule to the Amazon MWAA security group that
allows TCP traffic on port 443 to the ALB security group:

aws

10

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/application-load-balancers.html#deletion-protection
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

aws ec?2 authorize-security-group-ingress --region your-region

-—-group-id your-mwaa-security-group-id \
--protocol tcp \

--port 443 \

—-—-source-group your-alb-security-group-id

Note: You can find the Amazon MWAA security group id in the detail view of your
environment in the Amazon MWAA console.

mwaa-environment [Edit | [oetete |[opennirfiowur &2
Details
Status Airflow Ul
© Available [u] vpee.c2 eu-west-1.airflow.amazonaws.com [
ARN
@ am:aws:airflow:eu-west-1: :environment/mwaa-environment

DAG code in Amazon 53 info

53 Bucket DAGs folder

@ mwaa-blog-bucket [3 dags

Plugins file Requirements file

Networking info

Virtual private cloud (VPC) Subnets
wpc @& subnet @

subnet- &
Web server access
Private network

Figure 7 — Detailed view of the Amazon MWAA environment with its VPC security group
highlighted.

Target groups

The ALB needs two target groups:
1. Atarget group to drive traffic to the Amazon MWAA web server. This target group
must contain the two private IP addresses bound to the web server. | will refer to it as
the Amazon MWAA target group.

2. The Amazon MWAA authentication Lambda function.

aws

11

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Creating the Amazon MWAA target group
The Amazon MWAA target group must use the HTTPS protocol, an IP target type, and be
deployed in the same VPC as the Amazon MWAA environment.

1. Create the target group with the following AWS CLI command. This command uses the

default health check settings, but making sure HTTP redirects (302) are considered
healthy. Take note of the TargetGroupArn in the response.

aws elbv2 create-target-group --region your-region \
--name mwaa-web-server \
--port 443 \
--protocol HTTPS \
--vpc-id your-vpc-id \
-—-health-check-protocol HTTPS \
--matcher 'HttpCode="200,302""' \
-—target-type ip

Registering the Amazon MWAA private IP addresses
Register the IP addresses bound to the VPC endpoint deployed as part of the Amazon MWAA
environment, so the ALB can send traffic to them.
1. Retrieve the IP addresses of the Amazon MWAA Ul private endpoints following the
steps found in the Identifying the private IP addresses of your Apache Airflow Web
server and its VPC endpoint guide.

2. After you have the IP addresses, run the following AWS CLI command:

aws elbv2 register-targets --region your-region \
--target-group-arn your-target-group-arn \
—-—targets '[{"Id":"your-ip-address-

1", "Port":443}, {"Id":"your-ip-address-2","Port":443}]"

Creating the ALB

Now that all the prerequisites are met, you can create the ALB.
1. Run the following AWS CLI command to deploy an ALB that uses the target group you
created earlier.

aws elbv2 create-load-balancer --region your-region \
--name mwaa-alb \
—--subnets your-public-subnet-1-id your-public-subnet-2-id

--security-groups your-alb-security-group-id

adws

12

https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-vpe-access.html#vpc-vpe-hosts
https://docs.aws.amazon.com/mwaa/latest/userguide/vpc-vpe-access.html#vpc-vpe-hosts

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Note down the LoadBalancerArn and DNSName returned in the response, as you will need
them in the next steps.

Listeners

Your ALB needs at least one listener to start receiving traffic. In this case, you are going to
deploy two listeners, for HTTP and HTTPS traffic respectively. You will also configure the HTTP
listener to redirect to the HTTPS one.

HTTPS Listener

This type of listener requires an X.509 server certificate so clients can establish a Transport
Layer Security (TLS) connection with the ALB.

Note: This guide uses a self-signed certificate. By deploying a self-signed
certificate on an endpoint, modern browsers will warn you about reaching an
insecure web site. The best practice is to use a custom domain name for your
ALB and use a certificate issued by a Certificate Authority (CA). This guide uses
AWS Certificate Manager (ACM), which relies on the Amazon Trust Services LLC
Certificate Authority. You can use Route 53 for the domain name and an alias
record to point to the ALB, as explained in the Routing traffic to an ELB load

balancer guide.

1. Run the following commands to generate a self-signed certificate. Fill in the requested
information and make sure to introduce the full DNS name of the ALB as the Common
Name (CN) when prompted.

openssl genrsa 2048 > privatekey.pem

openssl req -new -key privatekey.pem -out csr.pem
openssl x509 -req -days 1200 -in csr.pem -signkey
privatekey.pem -out public.crt

openssl x509 -in public.crt -out cert.pem

2. Import the certificate to AWS Certificate Manager (ACM) with the following AWS CLI
command:

aws acm import-certificate --certificate fileb://cert.pem --
private-key fileb://privatekey.pem

Take note of the Amazon Resource Name (ARN) of the certificate, as you will need it in the next
step.
3. After you have a self-signed certificate imported into ACM, or one issued by ACM
itself, you can create the HTTPS listener with this AWS CLI command.

aws elbv2 create-listener --region your-region \
--load-balancer-arn your-alb-arn \

aws

13

https://aws.amazon.com/premiumsupport/knowledge-center/associate-acm-certificate-alb-nlb/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-elb-load-balancer.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-elb-load-balancer.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

--protocol HTTPS \

-—-port 443 \

--certificates CertificateArn=your-certificate-arn \

-—-default-actions 'Type=forward, TargetGroupArn=your-mwaa-—
target-group-arn'

4. Now, create an HTTP listener that redirects to the HTTPS endpoint with the same host,
path, and query. Write down the listener ARN.

aws elbv2 create-listener --region your-region \

—--load-balancer-arn your-alb-arn

--protocol HTTPS \

--port 443 \

--certificates CertificateArn=your-certificate-arn \

--default-actions
'Type=redirect,RedirectConfig={Protocol=HTTPS, Port=443, Host="
#{host}",Path="/#{path}",Query="#{query}",StatusCode=HTTP 302
} L}

At this point, the Airflow Ul should be accessible by using any of the methods described in the
Creating an Apache Airflow web login token guide. However, not all of your users will have the
AWS CLI or Python installed and configured with the right permissions.

) @ @ v W N+

mwaa-alb- S eu-west-1.elb.amazonaws.com/home

k Airflow DAGs Security Browse Admin Docs 07:11UTC =
DAGs
Active o Paused o
DAG Owner Runs Schedule Last Run Recent Tasks Actions Links

No results

Showing 0-0 of 0 DAGs

2.0.2
n.release:2.0.2+e4943061b01f3a026e7e2832ca84902e96b526fa

Figure 8 — View of the Apache Airflow web user interface on a browser
So far, you have deployed the following architecture:

aws

14

https://docs.aws.amazon.com/mwaa/latest/userguide/call-mwaa-apis-web.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

é:]:) Customer VPC
|D P Internet
85’ Public subnet

User’s browser

Public subnet

&o)-

Application Load
Balancer

Private subnet Private subnet

1

1 I
1 1
! = 1= :
1 1
| Elastic network Elastic network E
: interface interface !
1

Service VPC @

Airflow Web Server

Figure 9 — View of the architecture deployed so far
The next steps of this guide focus on how to incorporate a seamless login to Airflow by using
the ALB you just deployed, Amazon Cognito, an external IdP, and AWS Lambda.

Identity federation is a system of trust between two parties for the purpose of authenticating
users and conveying information needed to authorize their access to resources. In this system,
an identity provider (IdP) is responsible for user authentication, and a service provider (SP),
such as a service or an application, controls access to resources.

aws

15

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

AWS Elastic Load Balancing (ELB) allows you to delegate authentication from your application
to an ALB using the OpenlID Connect (OIDC) authentication protocol.

Amazon Cognito

Many of the existing Identity Providers (IdPs) (such as Okta, AuthO, and Azure AD) support
OIDC, so you could integrate them directly with an ALB. However, setting up this integration,
configuring claims, and verifying tokens usually entails extra steps and added complexity.
Amazon Cognito simplifies and harmonizes the configuration for any supported IdP.
Additionally, ALB integrates directly with Amazon Cognito user pools, reducing the overall
number of steps you need to complete to get the solution running. Using the ALB — Cognito
integration, you can directly reference a Cognito user pool identifier and an App Client from
your ALB listener rules and users will be redirected to the IdP login page for your application.
Amazon Cognito user pools also allow logins via federated IdPs, and offer support for Security
Assertion Markup Language (SAML) and OIDC alongside some popular social identity providers.
This guide uses an Amazon Cognito user pool with a federated IdP as the authentication layer.
This way, the proposed solution allows changing or adding federated IdPs without needing to
change the rest of the AWS components used.

Creating and configuring an Amazon Cognito user pool

Follow these steps to create and configure an Amazon Cognito user pool.

1. Create a user pool by running the following AWS CLI command. Note the user pool id
in the response, as you will need it in the next step. This user pool uses the default
configuration for password policies and other features. You can change them if you
intend to manage users in your user pool instead of or in addition to using federated
login.

aws cognito-idp create-user-pool --region your-region \
—--pool-name mwaa-users

2. Create a domain for this user pool with a custom prefix, so the IdP and the ALB can
communicate with it.

Although instructions are not included in this guide, you can use your own full
domain name with an associated certificate stored in AWS Certificate Manager.
For this approach, you also need the ability to add an alias record to the
domain’s hosted zone after it’s associated with this user pool.

aws cognito-idp create-user-pool-domain --region your-region

\

aws

16

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

--domain mwaa-env \
—--user-pool-id your-user-pool-id

Next, configure the external IdP to integrate with Amazon Cognito and provide claims that will
be used to determine the user’s permissions to access the Amazon MWAA environment.

Configuring Azure AD as federated Identity Provider

This guide uses Azure AD with SAML integration to illustrate how to integrate with Amazon
Cognito and to issue SAML tokens. These SAML tokens will contain claims that will be used to
determine users’ permissions to access the Amazon MWAA environment.

Creating an enterprise application

1. Inthe Azure AD console, go to the directory where you want to create your
application, choose Enterprise applications, and choose New application.

aws

17

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

— Microsoft Azure L Search resources, services, and docs (G+/)

Home >

v Default Directory | Overview

Azure Active Directory

) « —I— Add Vv ié? Manage tenants What's new Fﬂ; Preview features
X Diagnose and solve problems

Manage Overview Monitoring Tutorials
.’. Users
Search your tenant
&8 Groups
BE External Identities Basic information
ai» Roles and administrators
Name Default Directory

s/ Administrative units

. o Tenant ID |D
Enterprise applications

LN Devices Primary domain
i App registrations License
(&) Identity Governance

My feed

£ Application proxy

Home > Default Directory > Enterprise applications

=== Enterprise applications | All applications

Default Directary - Azure Active Directory

“ = Mew applicatio Columns [l Preview features ,C'\'_'] Got feedback?

6 Try out the new Enterprise Apps search preview! Click to enable the preview. =

Overview
O Overview

#. Diagnose and solve problems
View, filter, and search applications in your organization that are set up to use your Azure A

Manage
Application type Applications status Application vis

B Allapplications | Enterprise Applications A | | Any % | | Any

1 Application proxy

| = First 50 shown, to search all of your applications, enter a display name or the applicatio

§8% User settings
Name Homepage URL

Security
"= Conditional Access

[Consent and permissions

Activity

aws

18

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Figure 10 — Creating a new enterprise application in Azure AD
2. Pick (1) Create your own application and (2) introduce a name for it. Toggle the option
(3) Integrate any other application you don't find in the gallery (Non-gallery). Select
(4) Create.

Microsoft Azure 2 Search resources, services, and docs (G+/)

Home > Enterprise applications >

Create your own application X
Browse Azure AD Gallery

1 &7 Got feedback?

Create your own application 0] Request new gallery app ,:’ Got feedback?

What's the name of your app?
o You're in the new and improved app gallery experience. Click here to switch back to the legacy g

£ Search application Single Sign-on : All e finein)] What are you locking to do with your application?

O Configure Application Proxy for secure remote access to an on-premises application

Cloud platforms (O Register an application ta awith Azuze AD (App vou're developing)
3 (®) Integrate any other application you don't find in the gallery (Non-gallery)

Amazon Web Services (AWS) Google Cloud Platform

We found the following applications that may match your entry
We recommend using gallery applications when possible.
(€2 VMware Horizon - Unified Access Gat
aWS ‘x@ ware Horizon - Unified Access Gateway

Google Cloud

SAP

=7 ‘=

Figure 11 — Selecting the type of enterprise application in Azure AD

Creating users and groups

You need to add the users or groups in your directory to your application so they can access it.
Additionally, you need a way to authorize users to access the Amazon MWAA environment with
specific roles. There are different ways to do this, such as by using user attributes, roles, or
security groups. In this guide, you will use security groups.
1. Goto the directory where you created the enterprise application and choose Add, and
then Group.

aws

19

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

_ Microsoft Azure £ Search resources, services, and docs (G+/)

Home >

Default Directory | Overview

Azure Active Directory

“ —I— Add v {@3 Manage tenants What's new & Pr

© Overview
User

— . Tutorials
& Preview features

Group

Diagnose and solve problems

Enterprise application

Manage

_ App registration
44 Users

&8 Groups Name

Default Directory

Figure 12 — Creating a group in Azure AD
2. Enter a name, such as airflow-users, and a description. Select Create.

aws

20

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Home > Default Directory >

New Group

Group type * (O

I Security hd]

Group name * (O

l airflow-users v l

Group description (O

| Group of Airflow users v |

Membership type ©
Assigned
Owners

No owners selected

Members

No members selected

Figure 13 — New group window in Azure AD
3. Repeat the process and create two more groups: airflow—admins and airflow-
viewers. When you navigate to the Groups overview in your directory, you should
see something like in Figure 14. Take note of the Object Id of each group, as you will
use them later on to map them to a corresponding IAM role.

. airflow-admins

Security Assigned
airflow-users Security Assigned
. airflow-viewers Security Assigned

aws

21

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Figure 14 — Groups list view in Azure AD
For testing purposes, create three users in the directory: airflow-user, airflow-admin, and
airflow-viewer, adding each of them to the respective group you just created.

4. Choose Add, and then User. Introduce airflow-xxxx as the user’s name, and
Airflow User as name. Choose 0 groups selected to add the user to the airflow-
xxxxs group. On the Groups window, select the corresponding group and choose
Select. Select Create and repeat for the remaining users.

Now, add these users or groups to the enterprise application.
5. Navigate to the Amazon MWAA enterprise application and choose Users and groups.
There, choose Add user/group and then select None Selected under Users. Select
each of the users you just created, choose Select, and then choose Assign.

Configuring SAML Single Sign-On in Azure AD

You need to configure SAML single-sign-on so the directory users can get access to the
enterprise application.
1. Navigate to the Amazon MWAA enterprise application you created earlier and choose
Set up single sign on, and then choose SAML.

Home > Enterprise applications > Browse Azure AD Gallery

s mwaa-env | Overview

g Enterprise Application

B Overview Properties
Deployment Plan Name @
L : S
Maige mwaa-env I]
Application ID
{I! Properties i
™
&2 Owners
Object D ©
at» Roles and administrators (Preview) -
& Users and groups
Getting Started
3 Single sign-on
2 Provisioning
£ Application proxy b 1. Assign users and groups 2. Set up single sign on
C Self-service Provide specific users and groups access Enable users to sign into their application
to the applications using their Azure AD credentials
Security Assign users and groups Get started

% Conditional Access

Figure 15 — Setting up single sign on in Azure AD
2. Click the Edit button in the Basic SAML Configuration section. In the field Identifier
(Entity ID), introduce the Cognito user pool Service Provider (SP) urn, which is in the
form urn:amazon:cognito:sp: your-user-pool-id. Set it as default.

aws

22

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

3. Inthe Reply URL introduce a URL as this: https://your-cognito-domain-
prefix.auth. your-region.amazoncognito.com/saml2/idpresponse.
This is the URL where the IdP sends the response to a SAML authentication request.

4. Inthe Sign on URL, introduce your ALB URL so that the IdP allows sign-on requests
from it, click Save, and close the Basic SAML Configuration window.

Basic SAML Configuration
Save R'j Got feedback?

Identifier (Entity ID) * ©
The default identifier will be the audience of the SAML response for IDP-initiated 550

Default

| urn:amazon:cognito:spieu-west-1_x 4 v

http://adapplicationregistry.onmicrosoft.com/customappsso/primary D 0] 0]

Reply URL (Assertion Consumer Service URL) * @
The default reply URL will be the destination in the SAML response for IDP-initiated 550

Default

| https://mwaa-env.auth.eu-west-1.amazoncognito.com/saml2/idpresponse -

Signon URL @

https://mwaa-alb- eu-west-1.elb.amazonaws.com/ -

Figure 16 — Basic SAML configuration window in Azure AD

Configuring user attributes and claims

Following the steps in this section, you configure the claims that will be included in the SAML
token issued by the IdP. These claims are crucial for authorizing the users to access the Amazon
MWAA environment. In this guide, you will use security groups, so you can use the groups that
you created earlier to determine the Airflow role that the users will assume when accessing the
web Ul.

aws

23

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

1. Inthe Azure AD enterprise application, select the Single sign-on button on the left of
the screen, and then the Edit button in the User Attributes & Claims section. In the
pop-up window, select Security groups, and choose Group ID as the Source attribute.

Select Save.

aws

24

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Group Claims X
Manage the group claims used by Azure AD to populate SAML tokens issued to your app

Which groups associated with the user should be returned in the claim?

O Mone
O All groups
@ Security groups

O Directory roles
O Groups assigned to the application

Source attribute *

| Group ID LY

Advanced options

|:| Customize the name of the group claim

Name (required)
Namespace (optional)

Emit groups as role claims (0

Figure 17 — Configuring group claims for an enterprise application in Azure AD
2. You should see the default claims configured to be issued by Azure AD as in Figure 18.

aws

25

Amazon Web Services

Home > Default Directory > Enterprise applications > mwaa-env > SAML-based Sign-on >

User Attributes & Claims

+ Add new claim -+ Add a group claim == Columns

Required claim

Claim name

Unique User Identifier (Name ID)

Additional claims

}5\7 Got feedback?

Value

user.userprincipalname [nameid-for...

Claim name

http://schemas.microsoft.com/ws/2008/06/identity/claims/groups
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname

Value

user.mail

user.givenname

user.surname

Home > Default Directory > Enterprise applications > mwaa-env >

mwaa-env | SAML-based Sign-on

Enterprise Application

B Overview
@ peployment Plan
Manage

Il Properties

& Owners

Roles and administrators (Preview)

&

&2 Users and groups
2 Single sign-on
@ Provisioning

£! Application proxy

C Self-service

Security

% Conditional Access
a ..

ils Permissions

@ Taken encruntion

aws

'\-..__._,_.-'_.r

T Upload metadatafile) Change single sign-on mode

Test this application

SAML Signing Certificate

Status Active
Thumbprint
Expiration 9/17/2024, 4:59:16 PM

Notification Email

user.groups [SecurityGroup]

user.userprincipalname

Figure 18 — Default SAML user attributes and claims in Azure AD
3. Close the window, copy the App Federation Metadata Url, and write down the Login
URL.

A7 Got feedback?

£ Edit

App Federation Metadata Url

q https://login.microsoftonline.comy E !>

Certificate (Base64) Download
Certificate (Raw) Download
Federation Metadata XML Download

Set up mwaa-env

You'll need to configure the application to link with Azure AD.

Login URL

@gin.micmsoﬂonline‘comﬁ

Azure AD Identifier [https://sts.windows.net/

Logout URL ‘ https://login.microsoftonline.com/

View step-by-step instructions

Accessing a private Amazon MWAA environment using federated identities

26

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Figure 19 — App federation metadata URL and login URL highlighted in the Azure AD SAML
single sign-on detailed view
The IdP is now ready. You can finish configuring the Amazon Cognito user pool.

Configuring Cognito to use the external IdP

Creating Amazon Cognito custom attributes

To receive the claims issued by the IdP, use Cognito custom attributes. In this section, you are
going to create custom attributes where you can receive the user name and the groups they
belong to.

1. Execute the following AWS CLI command.

aws cognito-idp add-custom-attributes --region your-region \

--user-pool-id your-user-pool-id \

—-—-custom-attributes Name=idp-
groups,AttributeDataType=String,Mutable=true, Required=false
Name=1idp-
name, AttributeDataType=String, Mutable=true, Required=false

2. Now, you can add the external IdP to the user pool and map the SAML claim to this
custom attribute.

Adding the external IdP to the user pool

1. Inthe AWS Management Console, navigate to Amazon Cognito and choose Manage
user pools. Select the Amazon MWAA user pool you created earlier and choose
Identity providers (under Federation).

mwaa-users

| Generaisettings Do you want to allow users to sign in through external federated identity providers?
Users and groups
Select and configure the external identity providers you want to enable. You will also need to choose which identity providers to enable for each app on the Apps settings tab under App
Attributes integration. ¢
Policies
MFA and verifications
Advanced security
Message customizations o Facebook e Goog Login with Amazon o < n with Ap
Tags f
Devices
App clients
Triggers
Analytics
[s O s O -

App client settings

Domain nam:

Ul customization

Resource servers

I Federation

Identity providers

Attribute mapping

Figure 20 — Identity providers view for the mwaa-users Cognito user pool

aws

27

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

2. Choose SAML and then paste the IdP App Federation Metadata Url you copied earlier.
Introduce mwaa—azure—ad as the name for your identity provider and choose Create

provider.
x
o Metadata document
SAML.xml x
SAML
Provider name
You can use a corporate identity provider to sign in users
through SAML federation. [mwaa-azure-ad
Identifiers (optional)
Enable IdP sign out flow
Active SAML Providers Show signing certificate

Mapping SAML attributes to Cognito custom attributes

1. Inthe same window where you configured the SAML IdP, choose Configure attribute
mapping. Make sure the IdP you registered is selected in the drop-down list and

choose Add SAML attribute. Paste
http://schemas.microsoft.com/ws/2008/06/identity/claims/groups

in the text box and select custom: idp—groups in the drop-down list beside it.

2. Repeat the previous step with
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name and

custom: idp-name. Save the changes.

If you used a different type of claim, paste its claim name instead; you can find it in the SAML
claims configuration in your IdP.

adws

28

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

r P

mwaa-users

I coneraisattings How do you want to map identity provider attributes to user pool attributes?

Users and groups
In order to collect the right user information from federated users, you need to map user attributes from external identity providers to the corresponding attributes for Cognito User Pools. You

Attributes can refer to this doc and learn more about Cognito attribute mapping.L:

Policies

MFA and verifications
Facebook Google Amazon Apple SAML oibc

Advanced security

Message customizations

Tags mwaa-azure-ad

Devices

App clients Capture SAML attribute User pool attribute

Triggers

v http: xmisoap
Analytics

l App integration

v http: microsoft.

App client settings

Domain name
Add SAML attribute
Ul customization

Resource servers

I Federation

i il 3

Attribute mapping

Creating the Amazon Cognito user pool app client

To integrate an application with Amazon Cognito (Amazon MWAA in this case), you need an
app client. This app client will also serve to integrate with the external IdP.
1. Run the following AWS CLI command to create the app client:

aws cognito-idp create-user-pool-client --region your-region
\
—--user-pool-id your-user-pool-id \
--client-name mwaa-app \
--generate-secret \
--read-attributes custom:idp-groups custom:idp-name \
--write-attributes custom:idp-groups custom:idp-name \
--explicit-auth-flows ALLOW USER SRP AUTH
ALLOW REFRESH TOKEN AUTH \
—-—-supported-identity-providers your-identity-provider-
name \
--callback-urls https://your-alb-dns-
name/ocauth?2/idpresponse \
--logout-urls https://your-alb-dns—-name/logout/close \
--default-redirect-uri https://your-alb-dns—-name/ \
-—allowed-o-auth-flows code \
--allowed-o-auth-scopes openid \
--allowed-o-auth-flows-user-pool-client

You can find more information about the values for the input parameters in the Authenticate
users using an Application Load Balancer documentation.

adWs

29

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/listener-authenticate-users.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/listener-authenticate-users.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Configuring Cognito authentication on the ALB

So far, the ALB is configured to forward the traffic to the Amazon MWAA web servers. By

configuring Cognito authentication, the ALB will first try to get a valid token from Cognito

before reaching the target group. This way, you make sure that no unauthenticated traffic
reaches the Amazon MWAA endpoint.

Adding authentication to the existing ALB rule

1. Inthe EC2 console, select Load Balancers. Select the Amazon MWAA ALB and choose
the Listeners tab. In the HTTPS listener, choose View/edit rules.

aws services v

Instances
Create Load Balancer [YITERG

Launch Templates

1to1of1

ot Requests e bmncw -

S:
d Instances Description 34un|lom\g Integrated services Tags

Dedicated Hosts

Listeners listen for connection requests using their protocol and port. You can add, remove, or update listeners and listener rules.

Scheduled Insta

To view and edit listener attributes, select the listener and choose Edit.
Capacity Reservations

v Images
-4 Listener ID Security policy SSL Certificate Rules
w Elastic Block Store HTTP: 80 N/A NA Default: redirecting to HTTPS:/#{host):443/#{path) 2#{query)
Volumes am e View/edit rules
HTTPS : 443 ELBSecurityPolicy-2016-08 Default: mwaa-alb-certificate (IAM) Defgylt: forwarding to mwaa-web-server
Snapshots 4
am... - View/edit certificates

Lifecycle Manager

v Network & Security
Security Groups
Elastic IPs

Placement Groups

Key Pairs

Network Interfaces

v Load Balancing

Figure 21 — Accessing ALB rules in the AWS Management Console
2. Edit the existing rule by selecting the pencil icon at the top left and then the pencil icon
next to the rule. Select the Add action drop-down and select Authenticate...

aws

30

https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home#LoadBalancers

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

aws

Services w

{ Rules & s 1l = mwaa-alb | HTTPS:443 v F -
Select the rule to edit. Each rule must include one action of type forward, redirect, fixed response. Cancel

mwaa-alb | HTTPS:443 (1

» Rule limits for condition values, wildcards, and total rules.

i e I il I Edlt G~ = = = = = = = = = = - - - e e e s e e e, - .- --—--- 1
last amn + Requests otherwise not routed # 1. Forward to

Group-level stickiness: Off

<+ Add action n

1]
1 1
']
']
1]
1 1
1 mwaa-web-server: 1(100%)]
1 1
']
1]
\]
']
']

Figure 22 — Adding an authentication action to an ALB listener rule
3. Select the appropriate user pool and app client from the drop-down lists and save.
Choose Update and test by accessing the ALB URL on a browser.

aws Services v

< Rules + ry I = mwaa-alb Fo I >)
Select the rule to edit. Each rule must include one action of type forward, redirect, fixed response. Cancel

» Rule limits for condition values, wildcards, and total rules.

presssssssssessssesnessnsneneeess s~ T s s s AT s s E SR A SR 1
AUEE e _
" Requests otherwise not routed 1. Authenticate Learn more & L]

Amazon Cognito -

Cognito user pool Cognito =
eu-west-1_x 4 - Z

App client
9 paf v | 2

» Advanced settings (ALB defaults unless specified)

} Extra request parameters (optional)

2. Forward to m
mwaa-web-server: 1 (100%)
Group-level stickiness: Off

== Add action

Figure 23 — Configuring the authentication action to use the Cognito user pool

aws

31

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Your browser should redirect you to the Azure AD authentication page. There, introduce the
credentials for one of the Airflow users you created earlier. You should reach the Airflow
website.

At this point, the architecture looks like the following:

@ Customer VPC
? % | !! Internet)
Public subnet J8] Public subnet
M

User's browser
~

: : ; oIDC
| SAML ! ,>
v/ N/ E
1] A E— i Application Load
= €= mmmm e b e mm e
@25 Balancer

AzureAD Amazon Cognito
@ Private subnet Private subr
Target Grou
c2) = T c2)
Elastic network Elastic network
interface interface

Service VPC

B e

Airflow Web Server

Figure 24 — Architecture diagram after configuring Cognito authentication on the ALB

Now, as the Creating an Apache Airflow web login token documentation describes, you need to
have a way to seamlessly redirect the users to a URL that includes an Airflow web login token.
This is a JSON Web Token (JWT) that carries claims for Airflow to authenticate a user against an
environment and grant them the appropriate Airflow role. For this purpose, you will create a
Lambda function that is triggered by the ALB.

Airflow roles and Amazon MWAA

Amazon MWAA works with the default Airflow Roles: Admin, Op, User, Viewer, and Public.
These roles are described in the Airflow documentation. At the time of writing, Amazon MWAA
does not support custom Apache Airflow role-based access control (RBAC) roles.

Amazon MWAA includes environment and Airflow role information in the login token based on
the permissions of the principal calling the CreateWeblLoginToken API. This means that the
Lambda function needs to dynamically assume a role on behalf of the user accessing the

aws

32

https://docs.aws.amazon.com/mwaa/latest/userguide/call-mwaa-apis-web.html
https://airflow.apache.org/docs/apache-airflow/1.10.6/security.html?highlight=ldap#default-roles
https://docs.aws.amazon.com/mwaa/latest/API/API_CreateWebLoginToken.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

environment, and call the API with its temporary credentials. To keep things simple, you will
work with three of the default Airflow Roles: Admin, User, and Viewer, to access the
environment you deployed earlier.

Authentication/authorization Lambda function

The authentication/authorization (authX) Lambda function must be triggered when the users
try to authenticate into the Airflow Ul, or log out from it. This flow will be orchestrated by the
ALB using listener rules.

Execution Role

A Lambda function requires an execution role in order to access AWS resources. To generate
the web login token on behalf of the user, the Lambda function must dynamically assume one
of the roles described in the chapter IAM roles to access the Amazon MWAA environment. To
do this, you don’t need to grant explicit permission, since it is part of the Trust Relationship.
However, you need to configure permissions to allow the function to run on a VPC (so it can call
the Amazon MWAA endpoint) and to use Amazon CloudWatch Logs (in case you want to do
some debugging or get some operational insights).

For that, use the AWSLambdaVPCAccessExecutionRole AWS managed policy and a customer
managed policy with the basic Lambda execution permissions with the following content:

{

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow",
"Action": "logs:CreateLogGroup",
"Resource": "arn:aws:logs:your-region:your-

account—-id:*"

Yy
{
"Effect": "Allow",
"Action": [
"logs:CreateLogStream",
"logs:PutLogEvents"
1y
"Resource": [
"arn:aws:logs:your-region:your—-account-
id:log-group:/aws/lambda/mwaa authx:*"
]
}

aws

33

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/listener-update-rules.html
https://console.aws.amazon.com/iam/home#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2Fservice-role%2FAWSLambdaVPCAccessExecutionRole

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

1. Copy the previous block of code, paste it to a text editor, substitute the fields
highlighted in red text colour, and save it into a file called lambda-basic-
execution-policy. json

2. Create the IAM customer managed policy with the following command, and note
down the policy ARN in the response.

aws iam create-policy \

--path '/service-role/' \

--policy-name mwaa-authx-lambda-basic-execution-policy \

--policy-document file://lambda-basic-execution-
policy.json \

—-—description "Basic execution policy for the Amazon MWAA
AuthX Lambda function"

3. Create the Lambda function execution role and attach the IAM policies with the
following commands:

aws lam create-role \
—-—-role-name mwaa-authx-lambda-role \
--path '/service-role/' \

—-—assume-role-policy-document '{"Version": "2012-10-17",
"Statement": [{"Effect": "Allow", "Principal": {"Service":
"lambda.amazonaws.com"}, "Action": "sts:AssumeRole"' \

——description "Execution role for the Amazon MWAA authX
Lambda function"

aws iam attach-role-policy \

--role-name mwaa-authx-lambda-role \

--policy-arn arn:aws:iam::your-account-id:policy/service-
role/mwaa-authx-lambda-basic-execution-policy

aws lam attach-role-policy \
--role-name mwaa-authx-lambda-role \
--policy-arn arn:aws:iam::aws:policy/service-
role/AWSLambdaVPCAccessExecutionRole

IAM roles to access the Amazon MWAA environment

To access the Amazon MWAA environment with the three Airflow roles (Admin, User, and
Viewer), you need, respectively, three IAM roles. These roles need an |AM policy that allows

aws

34

https://docs.aws.amazon.com/mwaa/latest/userguide/access-policies.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

access to the CreateWebLoginToken API. Within this policy, you can limit the Amazon MWAA
environments and Airflow roles that the user can access.

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "airflow:CreateWebLoginToken",
"Resource": [

"arn:aws:airflow: your-region: your-account-
id:role/your-environment-name/airflow-role"
]
}

1. Create three policies (one for each role) using the following commands and write
down the ARNs of each policy.

aws lam create-policy \
--policy-name airflow-admin-web-login-token-policy \
——description "Policy to allow creating a web login token
for Airflow admins"™ \
--policy-document \

"

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "airflow:CreateWebLoginToken",
"Resource": [

"arn:aws:airflow: your-region:your-
account-id:role/your-environment-name/Admin"
]
}

aws iam create-policy \
--policy-name airflow-user-web-login-token-policy \
—-—description "Policy to allow creating a web login token
for Airflow users" \
--policy-document \

aws

35

https://docs.aws.amazon.com/mwaa/latest/API/API_CreateWebLoginToken.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

"

"Version": "2012-10-17",
"Statement": |
{
"Effect": "Allow",
"Action": "airflow:CreateWebLoginToken",
"Resource": [

"arn:aws:airflow: your-region:your-
account-id:role/your-environment-name/User"
]
}

aws iam create-policy \
--policy-name airflow-viewer-web-login-token-policy \
—-—description "Policy to allow creating a web login token
for Airflow users" \
--policy-document \

"

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "airflow:CreateWebLoginToken",
"Resource": [

"arn:aws:airflow: your-region: your-
account-id:role/your-environment-name/Viewer"

]
}

} '

Next, you are going to create three IAM roles, where each will contain one of the previous
policies. This way you will have one IAM role per Airflow Role, aptly named as: airflow-admin-
role, airflow-user-role, and airflow-viewer-role.

The authX Lambda function that will request the web login token will dynamically assume one
of these roles on behalf of the user accessing the environment.

The Trust Relationship of these roles only has to include the IAM role used by the
authentication Lambda function. Therefore, the Trust Relationship for all three IAM roles looks
like this:

{
"Version": "2012-10-17",

aws

36

https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

"Statement": [

{

"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::your—-account-id:role/service-

role/mwaa-authx-lambda-role"

ty

"Action": ["sts:AssumeRole","sts:SetSourceldentity"]

2. Substitute the account id and save the previous code as a file in the same folder from
which you are running the AWS CLI, and name it trust-relationship. json.

3. Create the roles and attach the policies you created earlier. Use the following AWS CLI
commands substituting the necessary fields.

aws ilam create-role \
--role-name airflow-admin-role \
--assume-role-policy-document file://trust-
relationship.json \
—-—description "Administrator role for Airflow"

aws lam attach-role-policy \

--role-name airflow-admin-role \

—policy-arn arn:aws:iam::your—-account-id:policy/airflow-
admin-web-login-token-policy

aws ilam create-role \
--role-name airflow-user-role \
--assume-role-policy-document file://trust-
relationship.json \
-—-description "User role for Airflow"

aws lam attach-role-policy \

--role-name airflow-user-role \

—policy-arn arn:aws:iam::your—-account-id:policy/airflow-
user-web-login-token-policy

aws

37

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

aws iam create-role \

rel

aws

vie

--role-name airflow-viewer-role \

--assume-role-policy-document file://trust-
ationship.json \

——description "Viewer role for Airflow"

iam attach-role-policy \

--role-name airflow-viewer-role \

--policy-arn arn:aws:iam::your-account-id:policy/airflow-
wer-web-login-token-policy

Function source code

Preliminary considerations

This guide uses a single Lambda function for two different ALB listener rules (logging in
and out). The corresponding action is determined within the function by evaluating the
URL path. This path is contained in the triggering event that the function receives.

The Lambda function source code provided in this guide is written in Python 3.9. Make
sure you have an appropriate version installed locally.

Multi value headers: the Lambda function needs to deal with more than one cookie,
hence the ALB target group configured for the function needs to have the multi value
headers setting enabled. This affects the code used to work with headers in two ways:

o The field containing the headers included in the event object is named
'multiValueHeaders'.

o Headers and query parameters exchanged between the load balancer and the
Lambda function use arrays instead of strings.

The source code for the Lambda function is divided in three main Python functions.

Logging

users in

Upon an unauthenticated request to the web server, Amazon MWAA redirects the browser to

the /aw

s mwaa/aws-console-sso path. The ALB will use this path in a listener rule to

trigger the Lambda function.
For logging users in, the function builds a URL that includes the Airflow web login token (see the
Creating an Apache Airflow web login token documentation), and then redirects the user to it.

This token is generated by the airflow:CreateWebLoginToken API, which needs to be called
using temporary credentials for the IAM role, determined using the output from the function
described in the next section.

aws

38

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/lambda-functions.html#multi-value-headers
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/lambda-functions.html#enable-multi-value-headers
https://docs.aws.amazon.com/mwaa/latest/userguide/call-mwaa-apis-web.html

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

If the API call succeeds, the function redirects the browser to a URL in the format:
https://HOST/aws mwaa/aws—console-sso?login=true#<token>. The
login=true query parameter in the URL can be used in an ALB listener rule to avoid
redirecting again to the Lambda function.
If the API call fails or there are no appropriate claims in the token, the function redirects the
user to an error page and terminates the Cognito session.
Mapping federated users to IAM roles
The log-in function needs to have a way of determining if and what IAM role to assume upon an
incoming request. In order to do this, this function uses the claims issued by the Identity
Provider (IdP). These claims are typically user attributes or groups that a user belongs to.
The function uses the two custom attributes you already defined in the Cognito user pool:

e custom:idp-groups — which is mapped to the security groups the user belongs to in

Azure AD.

e custom:idp-name — which is mapped to the userprincipalname attribute.
The function extracts those attributes from the JWT provided by Cognito. After decoding the
token payload, the function uses the custom: idp—-groups attribute in it to determine if the
user can access the Amazon MWAA environment and on which Airflow role. For instance, if
custom: idp—groups contain the group Amazon MWAA-Test-Admins, the user should be
able to access the Amazon MWAA environment as an Airflow Admin. The custom: idp-name
attribute is used for logging purposes.
You need to encode such a map using a JSON object like the following one. You will pass this
object as an environment variable to the Lambda function, substituting the group ids for the
ones in your IdP.

[{"idp—group": "1dbl943C—XXXX-XXXX-XXXx-4b8d1c774370", "iam-
role": "airflow-admin-role"},

{"idp-group": "58931a95-XXXX-XXXX-XXXX—-6f12c8£53233", "iam-
role": "airflow-user-role"},

{"idp-group": "b7282a94-xxXxxX-xxxXx-xxxxXx-3a0a0673f92f", "iam-
role": "airflow-viewer-role"}]

Logging users out

When a user clicks the Logout button in the Airflow Ul, the browser issues a request on the
/logout/ path, which can be used by an ALB listener rule to trigger the logout process in the
Lambda function.

For logging users out, the function expires the ALB authentication and Airflow session cookies.
Then it calls the logout URL in the Amazon MWAA web application using its private endpoint,
and redirects to the Cognito logout URL, which in turn redirects the user to a closing page.

Bringing it all together
1. Create a directory for the project called, for example, mwaa_authx, and navigate to it.

aws

39

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

mkdir mwaa authx && cd mwaa authx

2. Below you can find the source code for the Lambda function. Copy it into an editor and
save itasmwaa authx lambda function.py in said directory.

import os

import json

import base64

import logging

import requests

import jwt

import botocore

import boto3

from urllib.parse import quote

PRIVATE ENDPOINT = os.environ.get ('PRIVATE ENDPOINT',

'").strip ()

Amazon MWAA ENV NAME = os.environ.get ('Amazon MWAA ENV NAME',
'").strip ()

AWS ACCOUNT ID = os.environ.get ('AWS ACCOUNT ID', '').strip()
COGNITO CLIENT ID = os.environ.get('COGNITO_CLIENT_ID‘,
'').strip ()

COGNITO DOMAIN = os.environ.get ('COGNITO DOMAIN') .strip ()
AWS REGION = os.environ.get ('AWS REGION')

IDP LOGIN URI = os.environ.get ('IDP LOGIN URI') .strip()
GROUP_TO ROLE MAP =

Json.loads (os.environ.get ('GROUP_TO ROLE MAP', '{}'))
ALB COOKIE NAME = os.environ.get('ALB_COOKIE_NAME',
'AWSELBAuthSessionCookie') .strip ()

LOGOUT REDIRECT DELAY = 10 # seconds

sts = boto3.client ('sts'")
logger = logging.getLogger ()
logger.setlLevel (logging.INFO)

def lambda handler (event, context):

mwwwn

Lambda handler

mwrwwn

logger.info (json.dumps (event))

path = event['path']
headers = event['multiValueHeaders']

if '"x-amzn-oidc-data' in headers:

dWs

40

Amazon Web Services

Accessing a private Amazon MWAA environment using federated identities

'Logged out successfully')

encoded jwt = headers['x-amzn-oidc-data'] [0]
token payload = decode jwt (encoded jwt)
else:
There is no session, close
return close (headers)
if path == '/aws mwaa/aws-console-sso':
redirect = login(headers, token payload)
elif path == '/logout/':
redirect = logout (headers,
else:
redirect = logout (headers, '')

logger.info (json.dumps (redirect))

return redirect

def multivalue to singlevalue (headers) :

mwww

Convert multi-value headers to single value

mwwwn

svheaders =

headers.items () }
return svheaders

def singlevalue to multivalue (headers):

mwrwwn

{key: value[0] for

(key,

value)

in

Convert single value headers to multi-value headers

mwww

mvheaders =

headers.items () }
return mvheaders

{key: [value] for

def login (headers,

URL

aws

mwwwn

Function that returns a redirection to an appropriate

Jjwt payload) :

(key,

that includes a web login token.

wwwn

value)

in

Role to be determined using claims in JWT token
role arn = get iam role arn(jwt payload)
user name = Jjwt payload.get ('custom:idp-name',
host = headers['host'] [0]

if role arn:

mwaa = get mwaa client (role arn, user name)

role arn)

41

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

if mwaa:
Obtain web login token for the configured
environment
try:
mwaa web token =
mwaa.create web login token (Name=Amazon MWAA ENV NAME) [
"WebToken"]

logger.info ('Redirecting with Amazon MWAA WEB

TOKEN"')

redirect = {
'statusCode': 302,
'statusDescription': '302 Found',
'multiValueHeaders': {
'Location':
[f'https://{host}/aws mwaa/aws-console-
sso?token=true# {mwaa web token}']
}
}

except botocore.exceptions.ClientError as error:

if error.response['Error']['Code'] ==
'AccessDeniedException':
redirect = logout (headers,
f'The role "{role arn}" assigned to
{user name} does not have access to the environment "{Amazon
MWAA ENV _NAME}".')
elif error.response['Error']['Code'] ==
'ResourceNotFoundException':
redirect = logout (headers, f'Environment
{Amazon MWAA ENV NAME} was not found.')
else:
redirect = logout (headers, error)
else:
redirect = logout (headers, 'There was an error
while logging in, please contact your administrator.')
else:
redirect = logout (headers, 'There is no valid role

associated with your user.')
return redirect
def logout (headers, message) :

mwriw

Logs out from Airflow and expires the ALB cookies.
If a message is present, it displays it for a few

dWs

42

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

seconds and redirects to Cognito logout.

mwiiw

logger.info ('LOGGING OUT')
host = headers['host'] [0]

Convert multi-value headers to single value to forward
the contents to Airflow
svheaders = multivalue to singlevalue (headers)
svheaders|['host'] = PRIVATE ENDPOINT
logger.info (£'CALLING {PRIVATE ENDPOINT}")
issue a request to the Amazon MWAA logout private
endpoint
response =
requests.get (f'https://{PRIVATE ENDPOINT}/logout/',
headers=svheaders,
allow redirects=True)

Convert single value headers to multi-value headers so
the ALB processes them correctly

headers to forward =
singlevalue to multivalue (response.headers)

redirect uri = quote (f'https://{host}/logout/close’,
safe="")
cognito logout uri = \

f'https://{COGNITO DOMAIN}.auth.{AWS REGION}.amazoncognito.co
m/logout?client id=' + \

£'{COGNITO CLIENT ID}&response type=code&logout uri={redirect
_uri}&scope=openid’

headers = headers to forward
headers['Location'] = [cognito logout uri]
expire alb cookies (headers)

if message:
body = error redirection body (message,
cognito logout uri)

headers|['Content-Type'] = ['text/html']

redirect = {
'statusCode': 200,
'multiValueHeaders': headers,
'body': body,
'isBase64Encoded’': False

aws

43

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

}

else:
redirect = {
'statusCode': 302,
'statusDescription': '302 Found',
'multiValueHeaders': headers

return redirect

def get mwaa client (role arn, user name):
Returns an Amazon MWAA client under the given IAM
role

mwww

mwaa = None

try:
logger.info (f'Assuming role "{role arn}" with source
identity "{user name}"...')
credentials = sts.assume role (
RoleArn=role arn,
RoleSessionName=user name,
DurationSeconds=900, # This i1s the minimum
allowed
Sourceldentity=user name
) ['Credentials']

access _key = credentials['AccessKeyId']
secret key = credentials|['SecretAccessKey']
session token = credentials['SessionToken']

create service client using the assumed role
credentials, e.g. S3
mwaa = boto3.client (
'mwaa’',
aws_access_key id=access_key,
aws secret access key=secret key,
aws_ session token=session token
)
except botocore.exceptions.ClientError as error:
logger.error (f'Error while assuming role {role arn}.
{error}")
except Exception as error:
logger.error (f'Unknown error while assuming role
{role arn}. {error}')

aws

44

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

return mwaa

def get iam role arn(jwt payload):
Returns the name of an IAM role based on the

'custom:idp-groups' contained in the JWT token

This list contains the mappings between IdP groups and
their corresponding IAM role.

The list is sorted by precedence, so, if a user belongs
to more than one group, it's given

mapped to a role that contains more permissions

role arn = "'

logger.info (f'JWT payload: {jwt payload}"')
if 'custom:idp-groups' in Jjwt payload:

user groups = parse groups (jwt payload['custom:idp-
groups'])
for mapping in GROUP TO ROLE MAP:
if mapping['idp-group'] in user groups:
role name = mapping['iam-role']

role arn =
f'arn:aws:iam::{AWS_ACCOUNT_ID}:role/{role_name}'
break
return role arn

def parse groups (groups) :
Converts the groups SAML claim content to a list of

strings

The groups SAML claim comes in a string

When there is more than one group id, the string starts
and ends with square brackets

There might also be spaces between the group ids

groups = groups.replace('[', '"').replace(']"',
'") .replace(' ', ''")

return groups.split(',")

def decode jwt (encoded jwt) :

Decodes a JSON Web Token issued by the ALB after
successful authentication

against an OIDC IdP (e.g.: Cognito).

aws

45

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

https://docs.aws.amazon.com/elasticloadbalancing/latest/appli
cation/listener-authenticate-users.html
Step 1: Get the key id from JWT headers (the kid field)
Jjwt _headers = encoded jwt.split('.') [0O]
decoded jwt headers = baset4.b64decode (jwt headers)
decoded jwt headers = decoded jwt headers.decode ("utf-8")
decoded json = json.loads (decoded jwt headers)
kid = decoded json['kid']

Step 2: Get the public key from regional endpoint

url = f'https://public-
keys.auth.elb. {AWS REGION}.amazonaws.com/{kid}"'

req = requests.get (url)

pub key = req.text

Step 3: Get the payload
payload = jwt.decode (encoded jwt, pub key,
algorithms=[decoded json['alg']])

return payload

def expire alb cookies (headers) :

mwwwn

Sets ALB session cookies to expire
alb cookies = [f'{ALB COOKIE NAME}-1l=del;Max-Age=-
1;Path=/;",
£'{ALB_COOKIE NAME}-0=del;Max-Age=-
1;Path=/;"]

if 'Set-Cookie' in headers:
headers['Set-Cookie'] += alb cookies
else:
headers['Set-Cookie'] = alb cookies

def error redirection body (message, logout uri):
Returns an HTML string that displays an error message
and redirects the browser to the logout uri
body = f'<html><body><h3>{message}</h3>

Closing
session in ' + \
f'{LOGOUT REDIRECT DELAY} seconds' + \
'</body></html><script type="text/Jjavascript">' +

dWs

46

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

\
f'var seconds = {LOGOUT REDIRECT DELAY};' + \
'function countdown () {' + \
! seconds -= 1;' + \
; if (seconds < 0) {'" + \
£ window.location = "{logout uri}?>";' + \
! } else {' + \
1
document.getElementById ("countdown") .innerHTML = seconds;' +
\
! window.setTimeout ("countdown ()", 1000) ;'
+ \
' P+ N
"I+
'countdown () ;" + \
'</script>'

return body

def close (headers) :

mwrwwn

Requests user to close the current tab

mwww

body = '<html><body><h3>You can now close this
tab.</h3></body></html>"
headers['Content-Type'] = ['text/html']
return {
'statusCode': 200,
'multiValueHeaders': headers,

'body': body,
'isBase64Encoded': False

Deploying the Lambda function

Dependencies
The Lambda function depends on a few external Python libraries.
1. Create a new file called requirements. txt in the same directory where you stored
the function source code, and copy the following contents into it.

pyjwt
requests

urllib3

2. Install the dependencies into a new package directory.

aws

47

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

pip install -t ./package -r requirements.txt

3. Download and unzip the following wheel files into the package directory using these
commands.

wget
https://files.pythonhosted.org/packages/be/2a/6d266eead7dbb2d
872bbd1b8954a2d167668481ff34ebb70ffddl113eeab/cffi-1.14.6-
cp39-cp39-manylinuxl x86 64.whl

unzip cffi-1.14.6-cp39-cp39-manylinuxl x86 64.whl -d

. /package

rm cffi-1.14.6-cp39-cp39-manylinuxl x86 64.whl

wget
https://files.pythonhosted.org/packages/07/fa/f63509370561201
ffa852e4f3fb105c76ced6927£951ed4cc6a3973d1a527/cryptography-
35.0.0-cp36-abi3-

manylinux 2 17 x86 64.manylinux2014 x86 64.whl

unzip cryptography-35.0.0-cp36-abi3-

manylinux 2 17 x86 64.manylinux2014 x86 64.whl -d ./package
rm cryptography-35.0.0-cp36-abi3-

manylinux 2 17 x86 64.manylinux2014 x86 64.whl

The Lambda function needs these wheel files because the libraries must be
compiled for the native operating system. If you are using Linux on x86 as your
development machine, you can include cryptography and cffi in the
requirements.txt file

Deployment package
1. After the needed libraries are installed in the package directory, create a deployment
package with them, making sure they are located at the root of the .zip file. This
command generates a file named mwaa-auth-package.zipin your project
directory.

cd package && zip -r ../mwaa-authx-package.zip

2. Add the lambda_function.py file to the root of the zip file.

aws

48

https://files.pythonhosted.org/packages/be/2a/6d266eea47dbb2d872bbd1b8954a2d167668481ff34ebb70ffdd1113eeab/cffi-1.14.6-cp39-cp39-manylinux1_x86_64.whl
https://files.pythonhosted.org/packages/be/2a/6d266eea47dbb2d872bbd1b8954a2d167668481ff34ebb70ffdd1113eeab/cffi-1.14.6-cp39-cp39-manylinux1_x86_64.whl
https://files.pythonhosted.org/packages/be/2a/6d266eea47dbb2d872bbd1b8954a2d167668481ff34ebb70ffdd1113eeab/cffi-1.14.6-cp39-cp39-manylinux1_x86_64.whl
https://files.pythonhosted.org/packages/07/fa/f63509370561201ffa852e4f3fb105c76ced6927f951e4cc6a3973d1a527/cryptography-35.0.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
https://files.pythonhosted.org/packages/07/fa/f63509370561201ffa852e4f3fb105c76ced6927f951e4cc6a3973d1a527/cryptography-35.0.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
https://files.pythonhosted.org/packages/07/fa/f63509370561201ffa852e4f3fb105c76ced6927f951e4cc6a3973d1a527/cryptography-35.0.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
https://files.pythonhosted.org/packages/07/fa/f63509370561201ffa852e4f3fb105c76ced6927f951e4cc6a3973d1a527/cryptography-35.0.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

cd .. && zip -g mwaa-authx-package.zip
mwaa authx lambda function.py

3. The zip file you just created is the deployment package for the Lambda function. In
order to continue, upload it to an S3 bucket (for example, the same one you created at
the beginning of this guide).

aws s3 cp ./mwaa-authx-package.zip s3://your-bucket-
name/lambda/

Environment variables
The code provided in this guide uses environment variables. Environment variables allow you to
configure function parameters without changing the function code.
1. Create a JSON file called env. json and save it in your project directory; it contains
the environment variables that the Lambda function needs, which include the group to
role mapping described earlier.

"Variables": {
"ALB COOKIE NAME": "AWSELBAuthSessionCookie",
"AWS ACCOUNT ID": "your-account-id",
"COGNITO CLIENT ID":"your-cognito-client-app-id",
"COGNITO DOMAIN": "your-cognito-domain-prefix ",

"GROUP_TO ROLE_MAP":
"[{\"idp-group\":\"your-idp-airflow-admins-group-
id\",\"iam-role\":\"airflow-admins-role\"}, {\"idp-
group\":\"your-idp-airflow-users—-group-id\", \"iam-
role\":\"airflow-users-role\"}, {\"idp-group\":\"your-idp-

airflow-viewers—-group-id\",\"iam-role\": \"airflow-viewers-
role\"}1",

"IDP LOGIN URI":"your-idp-login-url",

"MWAA ENV NAME":"your-mwaa-environment-name",

"PRIVATE ENDPOINT":"your-mwaa-private-endpoint-
domain-name"

}

Creating the Lambda function
1. From your project directory, run the following AWS CLI command and write down the
function ARN, as you need that to register it as part of an ALB target group.

aws

49

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

aws lambda create-function --region your-region \

--function-name mwaa authx \

-—-description "Function to authenticate and authorize
users into an Amazon MWAA environment" \

--role arn:aws:iam::your-account-id:role/service-
role/mwaa-authx-lambda-role \

--runtime python3.9 \

--handler mwaa authx lambda function.lambda handler \

--code S3Bucket=your-bucket-name, S3Key=lambda/mwaa-authx-
package.zip \

--timeout 10 \

—-—-vpc-config SubnetlIds=your-private-subnet-1-id, your-
private-subnet-2-id, SecurityGrouplds=your-alb-security-group-
id \

--package-type Zip \

-—-environment file://env.json

Finishing the ALB configuration

Target group for the Lambda function

The ALB needs a new target group that points to the authX Lambda function. This target group
needs to have the multiValueHeaders option enabled.
1. Use the following AWS CLI commands to create the target group and configure it
accordingly.

aws elbv2 create-target-group --region your-region \
--name authx-lambda-tg \
—-—-target-type lambda

aws elbv2 modify-target-group-attributes --region your-region

--target-group-arn your-target-group-arn \
-—attributes lambda.multi value headers.enabled

2. Add permissions for the ALB to trigger the Lambda function and register the function
with the target group running the following AWS CLI commands:

aws lambda add-permission --region your-region \
--function-name mwaa authx \
--statement-id load-balancer \

aws

50

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

--principal elasticloadbalancing.amazonaws.com \
-—-action lambda:InvokeFunction \
——source-arn your-target—-group-arn

aws elbv2 register-targets --region your-region \

--target-group-arn your-target-group-arn \
—-—-targets your-lambda-function-arn

Note: the target registration might fail because it will take a while until the Lambda function is
fully deployed.

ALB Rules

Aside from the default action rule you created when deploying the ALB, you need four
additional ones to handle the authentication and logging out of the Airflow web UI.
The typical flow works as follows:

1.

aws

The user introduces the ALB URL in the browser, which matches the last rule in the
listener. This rule forces Cognito authentication, so the browser takes the user to the
IdP login page. After authenticated, the request is forwarded to Amazon MWAA, which
then redirects to the https://alb-domain/aws mwaa/aws—console-sso URL.

The request to https://alb-domain/aws mwaa/aws-console-sso reaches
the ALB and matches the rule number 2. The ALB verifies the Cognito token and
forwards the request to the authX Lambda function.

The Lambda function verifies the token contents and, if the federated identity has the
permissions, generates a Amazon MWAA web login token and redirects to
https://alb-domain /aws_mwaa/aws-console-sso?token:true#<web-
login-token>.

The request to https://alb-domain/aws mwaa/aws—console-

sso?token: true triggers rule number 1, which also verifies the Cognito token and
then forwards to Amazon MWAA. Amazon MWAA starts a session with the web login
token included in the request and the user can interact with the Airflow Ul.

Any further requests to Amazon MWAA (except logging out) will match the last rule
and will be forwarded to Amazon MWAA until the Cognito token expires.

51

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

6. When the user logs out from Airflow, the browser sends a request to https://alb-
domain/logout/. This triggers rule number 3, that verifies the Cognito token and
forwards the request to the Lambda function. The function invalidates the ALB session
cookies and redirects to the Cognito logout URL including a parameter called
logout uri with value https://alb-domain/logout/close. This parameter is
used by Cognito to redirect the browser to an appropriate URI and must be included in
the Logout URL configuration of the app client.

7. Cognito closes the session and redirects to https://alb-domain/logout/close.
This request triggers rule number 4. This rule sends a request without an
authentication token to the Lambda function. The function returns a simple HTML web
page indicating the user to close the browser window.

[¢]
[}

Rules (O} & 1l = mwaz-ab | HTTPS:443 v

To edit, select a mode above.

1 hd IF THEN
" Query string is token:true 1. Authenticate using Cognito
« Path is /aws_mwaa/aws-console-sso User pool ID: eu-west-1_x 34

iznt ID: 931 raf
(more...)
2. Forward to
mwaa-web-server: 1(100%)
Group-level stickiness: Off

2 - IF THEN
«* Path is faws_mwaa/aws-console-sso 1. Authenticate using Cognito
Us R4
Ci IC: 893 paf
(more...)
2. Forward to
authx-lambda-tg: 1 (100%6)
Group-level stickiness: Off
3 - IF THEN
«* Path is flogout/ 1. Authenticate using Cognito
User pool D eu-west-1_xI R4
cl 93 paf
(more...)
2. Forward to
authx-lambda-tg: 1 (100%6)
Group-level stickiness: Off
4 - IF THEN
«* Path iz flogout/close Forward to
authx-lambda-tg: 1 (100%6)
Group-level stickiness: Off
last HTTPS 443: IF THEN
default action +" Requests otherwise not routed 1. Authenticate using Cognito
User pool D! eu-west-1_x R4
Cl IC: 93 Jpaf

(more...)
2. Forward to
mwaa-web-server: 1(100%)
Group-level stickiness: Off

Figure 25 — All the required rules configured for the ALB listener

aws

52

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

This technical guide describes how you can securely grant access to a private Amazon MWAA
environment.

The component that authorizes access to that resource is the authentication and authorization
Lambda function. Therefore, you must protect that Lambda function to prevent changes that
would grant access to unauthorized identities.

You can achieve this by following the Grant least privilege best practice.

By following this technical guide, you have deployed a serverless solution to enable your users
to access a private Amazon MWAA environment using the same identity provider they use to
access other resources in their organization. Although this guide uses Azure AD as the IdP, you
can use this architecture to integrate other IdPs, such as Okta.

Following the architecture described in this guide, you can also consider building similar
solutions for other custom or off-the-shelf applications running on AWS.

Contributors to this document include:
e Tasio Guevara, Senior Solutions Architect, Amazon Web Services.

aws

53

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon Web Services Accessing a private Amazon MWAA environment using federated identities

Document Revisions

Date Description

February 2022 First publication

aws

g — 54

	Overview
	Before You Begin / Considerations
	Cost
	Amazon MWAA Environment
	ALB

	Architecture Overview
	Network
	VPC for the Amazon MWAA environment

	Amazon MWAA Environment
	Prerequisites
	Creating the Amazon MWAA environment

	ALB
	ALB prerequisites
	Security group
	Target groups
	Creating the Amazon MWAA target group
	Registering the Amazon MWAA private IP addresses

	Creating the ALB
	Listeners

	Using federated identities to authenticate Amazon MWAA users
	Amazon Cognito
	Creating and configuring an Amazon Cognito user pool

	Configuring Azure AD as federated Identity Provider
	Creating an enterprise application
	Creating users and groups
	Configuring SAML Single Sign-On in Azure AD
	Configuring user attributes and claims

	Configuring Cognito to use the external IdP
	Creating Amazon Cognito custom attributes
	Adding the external IdP to the user pool
	Mapping SAML attributes to Cognito custom attributes
	Creating the Amazon Cognito user pool app client

	Configuring Cognito authentication on the ALB
	Adding authentication to the existing ALB rule

	Authenticating and authorizing Airflow users
	Airflow roles and Amazon MWAA
	Authentication/authorization Lambda function
	Execution Role
	IAM roles to access the Amazon MWAA environment
	Function source code
	Preliminary considerations
	Logging users in
	Bringing it all together

	Deploying the Lambda function
	Dependencies
	Deployment package
	Environment variables
	Creating the Lambda function

	Finishing the ALB configuration
	Target group for the Lambda function
	ALB Rules

	Security
	Conclusion
	Contributors
	Document Revisions

