
This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

AWS Graviton Performance
Testing

Tips for Independent Software Vendors

September 15, 2021

https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/aws-graviton-performance-testing.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

1

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

2

Contents

Abstract ... 4

Introduction ... 5

What is AWS Graviton? .. 5

Benefits for ISV applications ... 6

Defining your test approach .. 6

What it does ... 6

How it works... 7

When to consider this approach.. 7

Common pitfalls ... 8

Further reading .. 8

Define success criteria .. 9

Improving customer experience .. 9

Reducing computing cost .. 9

Measuring price performance ... 10

Different ways to implement your test .. 10

Like for like comparison ... 12

Synthetic load testing .. 13

Replay .. 14

Testing against real workloads .. 15

How to instrument your test .. 17

Types of metrics .. 18

Test instrumentation .. 19

Test running ... 20

Other considerations ... 22

Conclusion... 23

Contributors ... 24

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

3

Further reading.. 24

Document versions ... 25

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

4

Abstract

This whitepaper is for decision makers and builders at independent software vendors

(ISVs) who are unsure about how to evaluate Amazon Elastic Compute Cloud (Amazon

EC2) instance performance and want to learn about best practices and common pitfalls.

The evolving price performance of Amazon EC2 instance types leads to better

performance at lower cost for Amazon Web Services (AWS) customers. Using the

example of AWS Graviton, this whitepaper shows how to define your test approach

when evaluating EC2 instances, set success factors, and compare different test

methods and their implementation.

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/graviton/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

5

Introduction

AWS Graviton processors are custom-built by AWS to deliver the best price

performance for cloud workloads running in Amazon EC2. Better price performance

translates into cost savings for customers, enabling independent software vendors

(ISVs) whose platforms run on AWS to reduce their cost of goods sold (COGS).

It can also provide a better experience for ISV customers. Many ISVs run their own

performance testing efforts to evaluate the price performance of Graviton and to model

the impact of unit cost reduction and performance-related reductions in fleet sizes on

their bottom line. This paper provides an overview of Amazon EC2 performance testing

best practices and common pitfalls to help you obtain reliable, actionable results.

This paper begins the discussion by introducing a set of key concepts (layers of a typical

ISV software stack) and then moves to a discussion of performance testing steps and

best practices (define, implement, instrument, run, and visualize performance tests).

What is AWS Graviton?

AWS Graviton processors are custom-built by AWS to deliver the best price

performance for cloud workloads. The Graviton processor is one of three processor

options and powers Amazon EC2 instance types for general purpose, compute-

optimized, memory-optimized, and storage-optimized use cases. Instances powered by

Graviton are available in most AWS Regions, as well as GovCloud and the AWS China

Regions.

Launched in 2019, Graviton2 is the second generation of AWS Graviton processors.

Graviton2-based instance types offer up to 40% better price performance compared to

fifth generation instances. (The first generation (A1) of Arm-based, Graviton-powered

EC2 instances were launched at re:Invent 2018.) The feature set of the Graviton

processor is optimized for cloud workloads and offers the following benefits:

• Large L1 and L2 caches for every virtual central processing unit (vCPU), which

means a large portion of your workload will fit in cache without having to go to

memory.

• Every vCPU is a physical core, meaning more isolation between vCPUs and no

resource sharing between vCPUs except last level cache and memory system.

• Cores connected together in a mesh with ~2TB/s of bisection bandwidth, allowing

applications to move very quickly from core to core when sharing data.

https://aws.amazon.com/ec2/graviton/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

6

• Graviton’s memory architecture means you don’t need to worry where application

memory is allocated from, or which cores are running the application.

Benefits for ISV applications

ISVs use AWS to define, build, operate, and market applications to AWS customers,

extending the choice of AWS customers in application domains including security, data

analytics, observability, storage and backup, and business applications.

ISV applications benefit from the adoption of Graviton in a number of common ISV use

cases, including Software as a Service (SaaS) offerings and the distribution of software

as marketplace products to AWS customers. Some of the typical benefits include:

• Better price performance compared to current generation EC2 instance types,

leading to higher throughput and lower latency for common cloud workloads.

• Lower COGS, a result of unit cost reductions and the optimization of server

footprint based on Graviton’s performance advantage.

• Broad ecosystem support for common server operating systems, programming

language runtimes and libraries, open-source software such as databases and in-

memory-caches, enabling ISV to migrate their applications without the need for

refactoring.

• Improved customer experience, leading to higher customer retention and lifetime

value as Graviton delivers unparalleled performance for a broad range of ISV

workloads.

Defining your test approach

Selecting the right test approach for your workload is important when deciding whether

to phase in Graviton. Start with observable properties of a system such response time,

latency, throughput, and error rates before considering systems performance at a more

granular level. This approach is referred to as outside-in testing.

What it does

An outside-in approach to performance testing allows you to analyze workload

performance in the context of customer experience. Customer experience plays an

important role in helping your customers adopt and implement your application.

Performance testing obviously does not influence the feature depth of your application,

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

7

but can help with non-functional requirements; in particular, tuning application

throughput and latency.

By taking an outside-in approach, you place customer experience first, and then

evaluate how different combinations of compute resources such as vCPU, memory,

input/output operations per second (IOPS), and network bandwidth impact on

performance variables.

How it works

Start by defining important customer experience outcomes your application needs to

achieve—such as application throughput, latency, and error rates. Throughput describes

the number of requests an application successfully processes within a given unit of time

(such as a second, minute, or hour). Latency describes the delay between a request

being sent and the acknowledgment of success being received. Error rates describe the

number of requests dropped due to some internal failure of the application or its

underlying system resources.

Describing customer experience in this way turns a qualitative outcome (customer

experience) into a quantitative measure, enabling you to analyze customer experience

under different load scenarios and resource configurations.

When to consider this approach

Consider using an outside-in approach when you want to evaluate application

performance in the context of customer experience. Graviton’s performance benefits

drive internal efficiencies and service improvement, leading to better customer

experience and retention. For example, Graviton demonstrates higher throughput for

workloads such as Redis and Elasticsearch, enabling you to run smaller instance fleets

without materially affecting customer experience.

Using an outside-in approach enables you to understand Graviton performance in the

context of a real workload, something that is difficult to establish by using standard

benchmarks at the resource level. Using standard benchmarks at the resource level

(micro-benchmarking) presents an idealized version of the resource under test, as the

input and load are pre-determined and consistent (for example, driving the same block

size to disk or performing a number of system calls within a unit of time). In reality, the

input to and load on a system will fluctuate based on requests from your users or other

applications (for example, one user request performs a point query while another

performs a range query).

https://redis.io/
https://www.elastic.co/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

8

Common pitfalls

Performance testing is an iterative process. Understanding performance bottlenecks is

key, as resolving one bottleneck often moves the performance problem somewhere

else. For example, resolving a throughput issue by selecting an instance type with

higher vCPU count and tuning your application for higher parallelism may not yield the

desired results if your load testing configuration runs as a single thread. In this case,

resolving a vCPU bottleneck in the system under test moved the throughput issue to the

load generator. It is important to understand system or architecture bottlenecks and

establish acceptable thresholds early on in order to avoid spending your tuning efforts

on a single bottleneck.

The following figure summarizes the things to consider when evaluating performance

bottlenecks of a typical ISV application.

The remainder of this paper focuses on aspects of application performance such as

throughput and latency, as well as metrics for host system resources such as CPU,

Memory, Disk, and Network and their impact on application performance.

Other considerations such as operating system tuning, the selection and tuning of

Amazon Elastic Block Store (Amazon EBS), and performance differences in hypervisor

technology are out of scope. However, this paper provides links to additional reading

resources where appropriate.

Layers of a typical ISV application

Further reading

For a complete discussion of systems performance concepts, performance testing

theory, and advanced topics not covered by this whitepaper, consult a performance

testing textbook such as Systems Performance by Brendan Gregg.

https://aws.amazon.com/ebs/
http://www.brendangregg.com/systems-performance-2nd-edition-book.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

9

Define success criteria

Any performance testing initiative needs to start with a clear understanding of what you

are trying to achieve. This section provides advice on setting goals for performance

testing and how to communicate objectives such as performance and cost optimization

to business stakeholders.

Improving customer experience

Customer experience is an aspect of competitive differentiation for ISV applications.

Examples of customer experience outcomes such as faster response time, lower

latency, and reduced error rates due to lower saturation and less requests dropped.

These outcomes result in higher customer satisfaction with a service, leading to

improved retention and higher lifetime value.

Graviton’s performance advantage translates into higher throughput and lower latency

for common cloud workloads such as databases and search clusters. This means your

application can serve more user requests and complete them in less time, leading to

improved customer experience and retention. The introduction of mixed instance policies

(instances with different characteristics such as the processor type) in Amazon EC2

Auto Scaling enables you to phase in instances powered by the Graviton processor and

to monitor their performance in a real-world setting (a practice known as A/B testing).

When instances underperform, you phase them out.

Reducing computing cost

Computing costs are a key input into lowering COGS, an important measure of SaaS

profitability. Industry benchmarks for publicly listed SaaS companies are in the 60–80%

range measured as gross profit margin (SaaS revenues less COGS divided by SaaS

revenues). This means that lower unit costs per compute instance and smaller instance

footprints are important for SaaS providers that are publicly listed and report their

financial data in earnings calls.

Graviton’s competitive pricing and performance advantage means you can lower

computing cost by reducing unit costs and running smaller server footprints. Graviton

instances offer up to 40% better price performance compared to current generation

instance types. Instances are on average 10–20% cheaper than alternatives in the same

instance family.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

10

Graviton’s performance advantage also enables you to run smaller server footprints,

leading to less instance to maintain and pay for in production. The combination of these

benefits leads to lower COGS, an important measure of profitability and internal

efficiency for SaaS providers that are publicly listed.

Measuring price performance

Price performance is the ability of a system to deliver performance at a particular price.

The price performance metrics is often used in performance engineering to compare

different systems. In the context of modeling the impact of unit cost reduction and

performance-related reductions resulting from the introduction of Graviton, use the

following definition:

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑡𝑜 𝑝𝑟𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 (𝑃) =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛

𝑃𝑟𝑖𝑐𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

For example, if you migrate from c5.2xlarge to c6g.2xlarge and see a 5% performance

increase, you would observe a 34.6% performance/price improvement (1.05/0.78 – or

5% performance increase, with c6g.2xlarge being 78% the cost of c5.2xlarge per hour).

If the intent of your migration is exclusively to lower the cost of operating the workload

without impacting the current user experience, then you will have accomplished this

goal.

𝑃 =
1 + 0.05

0.78
= 1.346 = 134.6% (𝑎 34.6% 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑝𝑟𝑖𝑐𝑒 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡)

Different ways to implement your test

This section discusses different ways to test and evaluate workloads running on EC2

and container orchestration platforms such as Amazon Elastic Container Service

(Amazon ECS) and Amazon Elastic Kubernetes Service (Amazon EKS). These

implementations range from easy to complex and can be used alone or in any

combination. While other options such as micro-benchmarking exist, these methods are

more appropriate for testing the impact of performance-related changes, rather than

providing a holistic view of the general performance of an instance in a workload.

An application’s bounding resources are the system level resources (compute, disk,

memory, network) on which your application is most dependent.

For example, if an application spends the majority of its time using the CPU, this

application is CPU bound. If the CPU is faster, the application would be faster. If an

https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

11

application performs better with a faster I/O subsystem (such as disk or network), then

this application would be disk or network I/O bound.

Following is a table that highlights four methods of testing, when to use them, potential

constraints, and how to overcome the constraints.

Table 1 – Overview of performance testing methods

Method When to use

Potential

constraints How to overcome

Instance selection

flow chart

When making your

initial instance

selection and you do

not have much prior

data

Not really indicative

of actual

performance or

performance

bottlenecks

Use the synthetic

load testing or test on

real workloads

Synthetic load

testing

When you want to

test resources

against real

workloads but are

unable to phase them

into your production

environment

Baking assumptions

into your load testing

script that do not

reflect reality

Consider replay

Replay When you have

actual data that

represents user

behavior/requests

reliably and you can

replay it in a test

environment or you

can use traffic

shadowing to send a

copy to your test

environment for

processing

Can require specific

tooling be in place to

duplicate customer

requests

Consider testing on

real world workloads

Testing on real

workloads

When you have well-

defined key

performance

indicators (KPIs) that

can be used to

measure impact of

Can be complicated

to implement and

instrument

Implement

blue/green (or red

black) deployments

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

12

Use the following for all examples: You have a workload that performs
aggregations on data over a distributed set of instances, then joins the
aggregate result together and returns the result to a customer (for
example, MapReduce). In this workload each node in the cluster receives
data, decrypts the data, performs an aggregation, then returns the
resulting dataset. Based on this description you might determine that this
workload is compute bound (for aggregations) and network bound (for
sending data between nodes).

Like for like comparison

Picking a new instance using a "like for like" comparison selects a new instance using a

simple flow chart to provide a starting point. If your workload is already running on EC2,

you can start by using the newest generation of the current instance type you are using,

or Graviton equivalent (for example, if you are using c5, you might test c6g). If you are

not currently running your workloads on EC2 or this is a new workload, then you can use

a flow chart (following) and the characteristics of your workload to provide a starting

point.

It is important to note that, even with the flow chart, you should test several instance

types to ensure you are choosing the right one for your workload.

Why this approach?

When evaluating new instance types, the easiest way to get started may be to select an

instance and run some tests based on coarse information you already know about the

workload (assuming you've determined your success criteria). This is a straightforward

approach that enables you to build a simple mental model and start testing quickly.

Often you will start here, then test the instance type against real workloads, or run

macro-benchmarks (synthetics) and micro-benchmarks (benchmarking), both of which

are covered below.

Examples of when this approach is most effective include the following (but not limited

to):

• This is the first time you are deploying this workload on AWS

introducing a new

instance type

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

13

• There is no dedicated performance engineering team at your company

• You want to try out new instances for your workload without spending a lot of time

and effort

Implementation

This implementation uses a flow chart to determine which instances may be the best fit

for your workload. For example, if you have a workload that uses local disk for a fixed

size ephemeral cache that is bound to network input/output (I/O), you could arrive at the

c6gn instance type, then determine the instance size based on the number of CPU

cores and amount of memory your application requires.

Instance selection flow chart

Synthetic load testing

This section outlines using synthetic load testing, why you might take this approach, and

how you can implement the approach. Many off-the-shelf applications (such as MySQL

and Hadoop) come with synthetic load generators built in. When it comes to testing

applications developed by your organization, however, you will need to develop your

own synthetic tests. Fortunately, there are open-source libraries and applications that

can help, which are covered further in the implementation section.

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

14

Why this approach?

If you have selected an instance via the flow chart in the like-for-like implementation

section, or by random choice, and don’t have the ability to test workloads on real user

requests, this approach is ideal.

Use the behavior observed in production environments (such as transactions per

second, traffic patterns on API endpoints, or frequency of job completion) to develop

synthetic load tests, then run them in development or staging environments.

The benefit of this approach is that you remove the risk of impacting application

performance for your real customer base. While this is a great benefit, there are caveats

to this approach.

For example, if synthetic tests based on user behavior are not frequently audited, they

could become stale and incorrect. Further, any bias from the designer of the load test

could unintentionally add incorrect assumptions into the test that don’t reflect the reality

of your users.

Implementation

For HTTP workloads, there are several workload generators. The wrk2 project is an

excellent option that can be used to synthesize a significant load of user requests that

accurately represents system latency by accounting for the effects coordinated

omission.

For off the shelf applications, like MySQL, MariaDB, and Hadoop, many come with their

own synthetic generators. For MySQL and MariaDB there is mysqlslap, for Hadoop

there is the aptly named Synthetic Load Generator.

To run the synthetic tests, deploy your workload to a development or staging

environment that mirrors the setup for production using the newly selected instance

type, then run the tests. Be sure to have the necessary instrumentation for the test, so

you can compare to previous data. Instrumentation and visualization are covered in the

How to instrument your test section.

Replay

In this section we discuss replaying user requests to a different environment to test new

instances. While this approach is the most technically complex, it does allow for

maximum flexibility while solving for the caveats of the synthetic load testing approach.

https://github.com/giltene/wrk2
https://mariadb.com/kb/en/mysqlslap/
https://hadoop.apache.org/docs/r1.2.1/SLG_user_guide.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

15

Why this approach?

This approach enables you to test new instances for your workload without introducing

them directly to your user base, reducing the risk of an underperforming instance

causing a negative impact to customer experience. Furthermore, using real user

requests removes the possibility of unintentional test design bias and the risk of test

configuration drifting away from the reality of your workload.

This approach is generally beneficial for testing changes any change to your workload,

including new EC2 instance and changes to the application code. By implementing the

replay approach. you can test freely without impacting your customer base. Changes

other than instance types are outside of the scope of this paper, but warrants a mention

as this approach allows you to implement multiple types of tests on your system.

Implementation

Implementing this approach requires a development or staging environment that is a

mirror of your production environment. You must deploy additional software on your

workload instances, load balancer, or API Gateway to collect and replay user requests

to your test environment.

There are several to accomplish the replaying of traffic. GoReplay is a popular open-

source solution that runs a single Go binary on your instance to replay requests to a

given target endpoint. Ambassador is open-source API Gateway that can run on

Kubernetes and replicate user requests using a mechanism they refer to as traffic

shadowing. Lastly, Amazon Virtual Private Cloud has a traffic mirroring feature that

enables you to copy network traffic from the elastic network interface of an Amazon EC2

instance.

Testing against real workloads

The last and most mature approach is to test new instances in the context of a real-

world workload. Testing new instance families on real user requests provides the best

insights into how they will perform on your workload and how they compare to your

current instance family of choice.

With this approach, you gradually phase Graviton instances into a workload starting with

a small percentage of requests. This provides the benefit of seeing your workload

running on Graviton and handling real requests, with the additional benefit of being able

to quickly remove the instances and failover to your original instance family if needed (if,

for example, you see increased latency or increased numbers of failed requests).

https://github.com/buger/goreplay
https://www.getambassador.io/
https://www.getambassador.io/docs/edge-stack/latest/topics/using/shadowing/
https://www.getambassador.io/docs/edge-stack/latest/topics/using/shadowing/
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/mirroring/what-is-traffic-mirroring.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://aws.amazon.com/ec2/

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

16

If your predetermined success criteria are met with Graviton on a small percentage of

traffic, consider gradually increasing (weighting in) the amount of traffic that the Graviton

instances are serving within the context of your workload.

The percentage of traffic you serve is ultimately up to you and the needs of your

business, but consider starting with a small percentage of your traffic and scaling up to

50% of all traffic. Scaling to a larger percentage of total traffic will allow the resulting

dataset to be representative of all users in your workload, and normalizes the resulting

metric dataset.

Why this approach?

With this approach, determining the success criteria can be based on the same KPIs of

the production workload. For your organization, these metrics may include (but not be

limited to) requests per second (RPS), request latency (such as end-to-end, first-byte),

time-to-job completion, and pass/error rates.

If these are not known or are not formally written down within your organization, discuss

with your teammates or engineering leadership to determine what will make this a

success. If you don’t have well-defined success criteria, as mentioned earlier in this

paper, consider starting with the RPS, request latency, time-to-job completion, or

pass/error rates for your current workload as the performance baseline, then determine

concrete outcomes from there.

Suppose you define the success criteria for an instance type as follows:

• End-to-end P50, P95, P99 and P99.9 request latency should be less than the

current instance

• Pass rate should be the same or higher

• Error rate should be the same or lower

As with the other approaches, it is critical to remember the overall intent of your

migration when using this approach. Consider that, in this example, even if request

latency and pass/error rate were identical, the price of operating the same number of

instances with Graviton would be less expensive than the x86 equivalent, assuming you

stayed within the same instance type and size.

Implementation

The goal of this approach is to see how new instances perform when running under user

load. While testing instances in an isolated environment with synthetics can expose

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

17

many important performance characteristics, running a real-world workload will allow

you to measure and compare directly against your existing instance family from the

perspective for your users.

Continuing with our data aggregation example workload, consider a service operates on

24 EC2 instances fronted by an Application Load Balancer (ALB), with Amazon Route

53 providing a friendly DNS record.

Given this setup, there are multiple approaches to allow for flexibility to control which

instance type receives traffic, and the percentage of how much each processes.

• Multi-instance type deployment — Deploy a subset of your instances as

Graviton2 running behind the same load balancer

• Blue/green deployment — Duplicate your entire stack, running all instances on

Graviton2, then use DNS to distribute requests across each stack

As an example of a multi-instance type deployment on AWS, you might create a new

target group, then register a set of Graviton instances to the target group. Continuing the

example of 24 instances, you could start with three Graviton2 instances in the new

target group, then leave 21 of the instances in the existing target group.

Next, modify the listener or rules on the ALB to forward requests to different target

groups. With this scenario, 12.5% of the requests would run on Graviton2. More

information can be found in the documentation for Auto Scaling groups with multiple

instance types and purchase options.

Both options provide the flexibility to control the percentage of requests served to the

different backends. Consider the first option when you have the ability to retrieve the

desired metrics from each host (for example, from application logs) and have historical

data for target response time for the ALB that you can use later to compare to current.

Consider the second approach when you want to keep the ALB metrics separate for

each workload or if you desire fine grained granularity of traffic distribution between the

two endpoints (Route 53 allows you to go as low as 1/256th of the traffic, or ~0.004%).

This list is not comprehensive and it is important to keep in mind any other

characteristics of your setup when deploying these setups.

How to instrument your test

This section covers example metrics to collect, options to instrument your tests to collect

these metrics, and recommendations on aggregating and viewing results.

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

18

The way you instrument a test should be dependent on the way you run your test (See

the Different ways to implement your test section). There is no "right" or "wrong" way to

instrument a test, or guidebook to tell you what metrics you collect. This is dependent on

what matters to your business and your users.

This paper starts by focusing on three categories of metrics: Business, Application-level,

and System-level. Each metric category can be used alone or in combination with

another category, then paired with a single or more than one test approach.

For example, if you are testing a new instance against real workloads, you
might already have instrumentation in place that allows you to measure
application and system-level performance at the instance level. You could
also use a business metric, such as the number of dropped requests, to
measure the impact these instances have on your customers.

You should experiment to find the right combination of metrics that work for you and

your business. More metrics may help you understand a problem if it arises at the

expense of creating additional data to sort through.

Types of metrics

Business metrics

Business metrics include concepts such as customer sentiment and service-level

agreements (SLAs). Business insights help explain whether customers are likely to be

satisfied with your service after introducing a change. For example, increased request

latency may historically be correlated with lower customer sentiment, leading to higher

churn or abandoned transactions.

By monitoring application and system-level metrics and putting them in the context of

business insights, you ensure that performance testing and tuning focuses on areas of

high priority to the business. Data collection may require you to look beyond the system

you are testing to include data sources such as customer surveys or qualitative results

from end user testing.

Data sources: surveys, support tickets

Application-level metrics

Application-level metrics include concepts such request rate, job run length, request

latency, and error rates. Application-level metrics enable you to measure certain aspects

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

19

of application performance and are an example of an external metric (observable by an

application user).

For example, the application request rate measures the number of requests an

application is able to process in a given unit of time. While application-level metrics

describe an important business-level outcome, they need to be correlated with system-

level metrics in order to gain insight into the root cause of performance degradation or

improvement.

On Graviton-based systems, applications have access to the full performance

entitlement of the underlying core. This translates into improved performance and higher

request rates for cloud workloads.

Data sources: application metrics, logs, and alerts

System-level metrics

System-level metrics include concepts such as CPU utilization, CPU wait time, disk

queue depth, and status checks. System-level metrics enable you to measure

performance aspects of system components such as vCPU, memory, storage, and

networking, and underlying hardware health.

You can correlate system-level metrics with application outcomes such as request rate

to gain better insight into the overall performance of your system. Graviton offers a

feature set that is optimized for cloud workloads. Each vCPU offers better resource

isolation, full access to the performance entitlement of a physical core.

Graviton’s improved memory architecture offers ~2TB/sec bisectional bandwidth,

allowing data to move faster between cores. The combination of these features gives

you access to unparalleled performance at the lowest cost in a family.

Data sources: system metrics, logs, and alerts

Next, this paper focuses on tools you can use to instrument your tests.

Test instrumentation

In this section we’ll discuss options for instrumenting tests. We cover two options, using

instrumentation at the cloud infrastructure level and using third-party provided tools.

Other options, such as system or instance level instrumentation that make use of tools

such as eBPF, are outside of the scope of this paper. You can find a list of reading

material on eBPF in the Further reading section of this paper. Regardless of how you

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

20

choose to instrument your test, the metrics you collect for later analysis can be collected

from a single test or multiple tests.

Cloud infrastructure instrumentation

This option selects Amazon CloudWatch Metrics to collect performance data at the

cloud infrastructure resource level. Highlight the CloudWatch agent.

Using the CloudWatch agent to instrument your tests allows you to leverage all the pre-

existing features and dashboards of Amazon CloudWatch, and reduce the amount of

manual work you need to do to aggregate result data. Starting to use the agent is as

simple as installing it, creating the CloudWatch agent configuration file, and starting the

agent.

Once the agent starts emitting metrics, you can begin visualizing the data in CloudWatch

dashboards and (optionally) share the dashboards with your team and leadership. When

it comes to aggregating data, CloudWatch has built in support for statistics and

percentiles that you can make use of in your visualizations.

Third-party options for Instrumentation

Instrumenting your tests with a third-party monitoring solution provides similar to the

benefit of using Amazon CloudWatch Metrics. There are many third-party solutions, too

many to list within the scope of this paper, each with their own benefits.

As with CloudWatch Metrics, the biggest benefit is that these solutions generally are

agent-based and provide meaningful data and visualizations "out of the box", with little

configuration required. The benefit of these tools is that if your organization is already

making use of them, the amount of effort required to implement data collection on a set

of instances you are testing should be minimal.

Test running

Running your tests

When running your tests, there are several factors to take into consideration to help you

build an effective result set.

The first you may consider is the amount of time that you run a test. If you are running a

benchmark or synthetic test, are you running it for a length of time that is representative

of your workload?

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/metrics-collected-by-CloudWatch-agent.html
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html#start-CloudWatch-Agent-EC2-commands-fleet
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Statistic
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Percentiles

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

21

If running a new instance against a real-world workload, are you letting it service user

requests for an amount of time that includes peak usage and allows you to derive

meaningful insights from the data?

Another factor is the number of instances in the test setup. If you are running a test one

time on a one instance, your result set is representative of that instance, and you might

experience a different result when scaling up a workload across hundreds or thousands

of instances. This number may vary depending on the type of test you are running.

Aggregating and viewing results

Aggregating result data helps you reason about workload performance as a whole,

rather than the performance of a single well or poorly performing node. At first, you

might be tempted to use the average (or mean) over a set of common servers.

Average or mean, however, will only tell you that 50% of the workload is performing

worse. To determine the long tail of performance, and quantify what is "worse", you

might make use of the P95, P99, and/or P99.9 of the result set.

Aggregating results is one step, but visualizing the data is what will help make it

meaningful. Seeing the visualization will help you "see" what's wrong and give you an

indication of where to start your investigation. Consider displaying each relevant metric

and the corresponding values on a distribution graph, rather than focusing on visualizing

a fixed set of values. Viewing the data on a distribution graph will allow you to

investigate details and outliers at a finer grain.

Benefits and trade-offs

Each of these options have benefits and trade-offs depending on your business, desired

metric(s), and timeline.

Amazon CloudWatch and third-party monitoring solutions are able to get you up and

running quickly and provide the simplicity of a built-in dashboarding solution, but might

not provide the level of granularity that you need when deep diving on performance

differences. Other options, such as eBPF, which is outside the scope for this paper, can

be as extensive as you can come up with, but might take more time to implement and

create consumable visualizations from.

No matter the option you choose, when deciding on instrumentation, be sure to first

determine why you want the data you are collecting, what you will use the data for, and

how you instrument the collection. This helps avoid overloading yourself with metrics

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

22

that may not be necessary for profiling your workload, or be relevant to the instance

migration.

Other considerations

This section introduces a set of additional considerations that help you make the most of

your performance testing project. Consider these points as you plan your performance

testing and instance selection project.

Understand key differences

Unlike fifth generation EC2 instances with x86-based processors, sixth generation

Graviton2 processors do not use simultaneous multithreading (SMT). This means the

vCPU count of an instance matches its physical core count (and vice versa), leading to

implications for performance testing and benchmarking when comparing instances with

an equal vCPU count.

For example, if your application code uses only half of the vCPU on a fifth generation

instance because of the impact of hyperthreading, then this check is no longer required

on sixth generation Graviton2 instances and you may want to disable it.

Upgrade operating systems and language runtimes

Before running your test on Graviton, make sure to upgrade your operating system and

language runtime to the most recent version. Some older operating systems and

language runtime versions are not optimized to run on modern processors like

Graviton2.

Your workload will not have access to the full performance entitlement of Graviton2 in

this case and will run slower than expected. Upgrade your operating system, runtime

version, and code base to a higher version number first. This will give you access to the

latest EC2 instance capabilities. Follow the AWS Graviton Getting Started Guide and the

AWS Graviton for Independent Software Vendors whitepaper when planning your

migration approach.

Test side-by-side

Next, retest your workload in your current environment (your normal test environment

using current generation Intel or AMD-based instance types) to measure the effects of

the upgrade.

https://github.com/aws/aws-graviton-getting-started/blob/main/os.md
https://github.com/aws/aws-graviton-getting-started
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton2-for-isv/welcome.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

23

Successful upgrades provide access to the latest EC2 instance capabilities and

performance optimization for your instance type, leading to better workload performance

and cost.

Retesting your workload in your current environment also allows you to gather data and

draw comparisons between Graviton2 and fifth generation instance types in the

respective instance family. Once you know that your workload performs satisfactorily,

you can then move on to migrating your workload to Graviton2 for performance testing.

Test different instance shapes and sizes

Phase in Graviton instances next and consider testing across multiple instance types

and sizes in a given instance family. This enables you to systematically detect issues

that relate to instance size such as performance bottlenecks on very small or very large

Graviton instance types.

Each Graviton2 vCPU matches a physical core, providing you access to the full

performance entitlement. This opens up opportunities to consider other instance shapes

(such as instances with less vCPU with same or similar memory capacity) when

selecting the right instance for your workload. Also consider other performance tuning

advice for Graviton2. Both the Graviton Getting Started Guide and the Graviton for

Independent Software Vendors (ISV) whitepaper are great places to start.

Conclusion

This whitepaper introduced a systematic approach to performance testing when phasing

in AWS Graviton powered instances in common ISV use case scenarios—including

SaaS and marketplace offerings. The paper reviewed different test methodologies and

discussed their benefits and limitations. This included outside-in approaches that focus

on testing and measuring the impact of performance tuning on customer experience

outcomes, such as request latency and error rates.

It also included inside-out approaches that focus on testing the performance of system

resources such as CPU, memory, disk, and network in the context of an application

workload. The whitepaper discussed three ways in which to implement performance

testing in service including Amazon EC2, and offered ways in which you can instrument

your workload and gather reliable performance data.

https://github.com/aws/aws-graviton-getting-started
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton2-for-isv/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton2-for-isv/welcome.html

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

24

AWS continuously evolves the portfolio of compute instances available on the platform.

Make sure to subscribe to our Compute Blog and What’s New announcements to stay

on top of new instance types and innovations by AWS.

Contributors

Contributors to this document include:

Karsten Ploesser, Senior ISV Solutions Architect, Amazon Web Services

Maxwell Moon, Senior ISV Solutions Architect, Amazon Web Services

Special thanks to:

Jesse Chen, Principal Performance Engineer, Splunk, Inc.

Derek Feriancek, Performance Software Engineer, Splunk, Inc.

Ali Saidi, Senior Principal Engineer, Amazon Web Services

Arthur Petitpierre, Senior Specialist Solutions Architect, Amazon Web Services

Jeff Underhill, Principal Compute GTM Specialist, Amazon Web Services

Further reading

For additional information, see:

• Gregg, B. 2020, Systems Performance: Enterprise and the Cloud, 2nd Edition,

Pearson, New York City, New York.

• Calavera, D and Fontana, L. 2020, Linux Observability with BPF: Advanced

Programming for Performance Analysis and Networking, O’Reilly Media Inc.,

Sebastopol, California.

• Getting Started with AWS Graviton

• AWS Graviton2 for Independent Software Vendors

• AWS Well-Architected Framework – Performance Efficiency Pillar

• AWS re:Invent 2013 | Day 2 Keynote with Werner Vogels

https://aws.amazon.com/blogs/compute/
https://aws.amazon.com/new/
https://github.com/aws/aws-graviton-getting-started
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton2-for-isv/introduction.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/performance-architecture-selection.html
https://www.youtube.com/watch?v=Waq8Y6s1Cjs&t=1586s

This version has been archived.

For the latest version of this document, visit:

https://docs.aws.amazon.com/whitepapers/latest/
aws-graviton-performance-testing/aws-graviton-

performance-testing.html

Amazon Web Services AWS Graviton Performance Testing

25

Document versions

Date Description

September

15, 2021

First publication

	Abstract
	Introduction
	What is AWS Graviton?
	Benefits for ISV applications
	Defining your test approach
	What it does
	How it works
	When to consider this approach
	Common pitfalls
	Further reading

	Define success criteria
	Improving customer experience
	Reducing computing cost
	Measuring price performance

	Different ways to implement your test
	Like for like comparison
	Why this approach?
	Implementation

	Synthetic load testing
	Why this approach?
	Implementation

	Replay
	Why this approach?
	Implementation

	Testing against real workloads
	Why this approach?
	Implementation

	How to instrument your test
	Types of metrics
	Business metrics
	Application-level metrics
	System-level metrics

	Test instrumentation
	Cloud infrastructure instrumentation
	Third-party options for Instrumentation

	Test running
	Running your tests
	Aggregating and viewing results
	Benefits and trade-offs

	Other considerations
	Understand key differences
	Upgrade operating systems and language runtimes
	Test side-by-side
	Test different instance shapes and sizes

	Conclusion
	Contributors
	Further reading
	Document versions

