N

Security Overview of Amazon EKS
Auto Mode

First published September 18, 2025

Last updated September 18, 2025

Notices

Customers are responsible for making their own independent assessment of the information in this
document. This document: (a) is for informational purposes only, (b) represents current AWS product
offerings and practices, which are subject to change without notice, and (c) does not create any
commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services
are provided “as is” without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,
and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2025 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

INEFOAUCTION ..ottt ettt s et et et e e s e e s e e s e s esestenessesesseneas 2
BENETIES ..ottt ettt ettt et ettt eaeebeebeeteeteebe b et entereereeaeeretan 2
AWS Shared Security Responsibility MOdelc.ccoveieiiiciieeece e 3
EKS control plane and data Plane ... 3
AmMAzoN EKS CONTrOL PLaN@... ..ottt n s 4
KUBDEINETES API AT ...c.eiieiieieiiieee ettt sttt sttt et sttt b ettt e st s ese e s s be e ssesens 5

EKS Auto Mode Capabilitiesccccivieiiiiieiceecere ettt sttt sttt et b s b 5

EKS Auto Mode data PLane ...ttt benren 6
EC2 MaNaged iNSEANCEScueiriiiiiieietret ettt skt skt b et skt b et s b et et ne b 6
INSEANCE CONFIGUIATION w..cotiicicececec ettt st st e b ae et e e e seebe s eseebeaeseetesaens 7
NOdE role @Nd @CCESS EMNLIY ..ottt ettt bbbkttt b et sa b 7
NOAE OPErAtING SYSTEIM ..ottt sttt st et st et besbesaebesaeseebesbeseebesaasaesesaaseesesaeneas 8

[\ [oYa 1IN oY= 1 el][e TSR UU SRR 9

L@ .] 0] U = P 10

IS o] = [[T OSSR 10
NEEWOTKING ..ottt ettt st st et et e st e seete st e se et e s ese et e s eseebe s eseebesbeseetessenentensns 10
Node component Kubernetes RBAC ...ttt 12
WOTKLOGAS ...ttt et s bt e st e e be e be s be e st e beeseetesbaensesteesaensesrnenes 12
CONFIGUIALION ...ttt sttt ettt st et e b e s b eseebe e e se et e s eseebe s eseetesseseetensens 12
RUNEIME MONTTOTING ..ttt sttt 13
CONCLUSION ...ttt bbbt b bbb e bt s b e st et e st e b et e ket eb et e b et ebesbeseabenenaeneas 13
(@0 a1] 0 TU L o] OSSR 13
FUMTREE FAAING ...ttt ettt b e 13
DOCUMENT FEVISIONS ...ttt ettt st a et e s teeat et e s bt e st e b e eae et e saeentesteeneeneesneenes 14

Security Overview of Amazon EKS Auto Mode

Abstract

This paper is intended for existing and potential Amazon EKS customers who are using or considering
EKS Auto Mode. It provides a comprehensive security overview of Auto Mode, which is helpful for new
adopters and deepens understanding of Auto Mode for current customers.

Introduction

Since its introduction in 2018, Amazon Elastic Kubernetes Service (Amazon EKS) has provided a
managed Kubernetes control plane integrated with existing AWS services, where Amazon Web
Services (AWS) is responsible for the health, scaling, and patching of the control plane. Amazon EKS
Auto Mode represents a significant evolution in Kubernetes infrastructure management, combining
secure and scalable cluster infrastructure with integrated Kubernetes capabilities managed by AWS. We
have extended the AWS managed portion of the control plane to include the worker nodes, their
components and core cluster capabilities.

The result is a production-ready, Kubernetes-conformant cluster that is ready to host workloads out of
the box. Customers who have previously used managed node groups (MNG) or Karpenter can transition
to EKS Auto Mode, so they can focus on deploying their applications while Auto Mode handles the rest.
This makes it an ideal solution for those who want to use Kubernetes without having to manage its
underlying complexity.

To make this transition seamless, EKS Auto Mode has been designed to be compatible with existing
clusters and their compute management. This allows transitioning the entirety or a subset of workloads
to Auto Mode managed compute to minimize disruption.

Benefits

EKS Auto Mode is a new operating model for Amazon EKS. In addition to the reduced operational
responsibility, there are several technical changes to further improve the security posture of Auto Mode
nodes.

e EC2 managed instances: EKS Auto Mode uses Amazon Elastic Compute Cloud (Amazon

EC2) managed instances to provide the compute that backs an Auto Mode node. This
allows Auto Mode to provide the full breadth of Amazon EC2 capabilities while delegating
operational control to Amazon EKS.

e Minimal container optimized OS: The operating system used on Auto Mode nodes is a variant
of Bottlerocket, which is optimized solely for running containers.

e Minimal permissions on the node role: Auto Mode has been designed to require fewer
permissions on the node’s AWS ldentity and Access Management (IAM) role.

e AWS EKS managed compute, networking, and storage capabilities: Auto Mode provides

managed capabilities for these functions, which shifts the responsibility for health and patching
of the components that normally provide them to AWS.

e Frequent patching: AWS is responsible for patching the components hosted on AWS
infrastructure and the components in the Auto Mode node Amazon Machine Image (AMI).

Security Overview of Amazon EKS Auto Mode

https://aws.amazon.com/eks
https://aws.amazon.com/
https://aws.amazon.com/
https://karpenter.sh/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-ec2-managed-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-ec2-managed-instances.html
https://aws.amazon.com/bottlerocket/
https://aws.amazon.com/iam

e Limited node lifetime: It’s a best practice to treat Kubernetes nodes as ephemeral compute
providers. Auto Mode builds upon that by stopping nodes from living longer than 21 days.

AWS Shared Security Responsibility Model

Security and compliance is a shared responsibility between AWS and the customer. The AWS Shared
Responsibility Model can help relieve the customer’s operational burden because AWS operates,
manages, and controls the components from the host operating system and virtualization layer down to
the physical security of the facilities in which the service operates.

With EKS Auto Mode, AWS is responsible for the configuration, patching, and health of the EC2
instances so that customers can focus on the Amazon Virtual Private Cloud (Amazon VPC) and
cluster configuration, and the application containers that they are running.

EKS Auto Mode accomplishes this by using EC2 managed instances. Using managed instances,
customers can delegate operational control over the instances to the Amazon EKS service. EKS is then
responsible for patching the components that are delivered as part of the AMI. This combines with the
21-day maximum node lifetime for Auto Mode, so that nodes are regularly replaced with newer nodes
running the most recently released version of the AMI, containing the latest patches.

System Agents, Application containers: Availability, security, monitoring _ g %3

Kubelet, 1:2 o

Container Runtime VPC infrastructure, cluster configuration, add-ons 3 Managed by
" Customers

Cluster EC2 : Operating . aosacs Health

iiancas Lifecycle System Patching Monitoring and Repair

Cluster Compute Pod Networking Elastic Load .

Capabilities Autoscaling / Network Policy Balancing Storage Drivers

EKS Cluster K8s API Server K8s Etcd Database =

Control Plane Z &

Foundation _ N Managed by
Compute Storage Networking Monitoring Amazon

Services

Web Services

AWS Global Regions Local Zones Edge Locations

Infrastructure

Figure 1: Shared Responsibility Model with EKS Auto Mode

EKS control plane and data plane

Amazon EKS operates a control plane that handles the AWS API calls responsible for high-level cluster
management (such as eks:CreateCluster and eks:UpdateClusterConfig). That control
plane is not covered in detail in this document; instead, this document focuses on the cluster-specific
Kubernetes control plane and data plane. For information about securing the AWS APIs for cluster
management, see the Security best practices in |AM guide.

Security Overview of Amazon EKS Auto Mode

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/vpc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-ec2-managed-instances.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Eo

Authenticated
user

| EKS Auto Mode Security Overview

AWS VPC AWS VPC
Kubernetes Control Kubernetes Control
Plane Plane

Customer VPC Customer VPC
= =

Figure 2: Security Overview covered content

Amazon EKS control plane

The Kubernetes control plane managed by Amazon EKS runs inside an EKS-managed VPC. This control
plane is single tenant, meaning that for each EKS cluster there is a unique EKS managed VPC and
Kubernetes control plane. The EKS control plane comprises the Kubernetes API server nodes and etcd
cluster. Kubernetes API server nodes run components such as the API server, scheduler, and kube-
controller—-manager in an auto-scaling group. EKS runs a minimum of two API server nodes in
distinct Availability Zones within an AWS Region. Likewise, for durability, the etcd server nodes also run
in an auto-scaling group that spans three Availability Zones. EKS runs a NAT gateway in each Availability
Zone, and API servers and etcd servers run in a private subnet. This architecture protects cluster
availability so that an event in a single Availability Zone doesn’t affect the EKS cluster’s availability.

Security Overview of Amazon EKS Auto Mode

https://etcd.io/

-
>
b3
3
(a]

-
Availability Zone 2

AWS VPC) @ ! Availability Zone 1 | ! Lo
: 9 - B |
A 4 | compute o compute oo
[TTTmmommmmmm s] [TTTmmmmmmmmommmoy | [TTTmmmmommemmmmey o ! controller Do controller I
' Availability Zone 1 ' i Availability Zone 2 ' | Availability Zone 3 ! | H o 1 i
1 1 PEE R I P L P) I
' API Server —_— API Server P : i
1 1 1 I 1 1
1
E etcd . : etcd = etcd o
i |
1 1 1 1o 1 !

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I @
>
=
wi
<
o
N

Availability Zone 1 Availability Zone 2

networking
controller

controller

! i
' i
i networking '
|

1
: :

Availability Zone 1 Availability Zone 2

\ i
1 Il I i 1 '
E Lo | :

| ' i
! 1 !] !

AWS VPC !
| Auto Mode o Auto Mode o !
i |
: Node — (= b Node —(@m | ! R et T el I
' i ' . 1 | Availability Zone 1 | | Availability Zone2 !
: EKSOwned ' | EKS Owned | | ' P ol
! ENI ol ENI 1B 1 storage [storage '

i . o ' controller P controller A
1 1 1 I I
I

Figure 3: Amazon EKS high level architecture

Kubernetes AP| data

Amazon EKS provides default envelope encryption for Kubernetes APl data in EKS Auto Mode clusters.
Envelope encryption protects the data you store with the Kubernetes API server. For example, envelope
encryption applies to the configuration of your Kubernetes cluster, such as ConfigMaps. Envelope
encryption does not apply to data on nodes or Amazon Elastic Block Store (Amazon EBS) volumes.
This envelope encryption extends across Kubernetes API data.

This provides a managed, default experience that implements defense-in-depth for your Kubernetes
applications and doesn’t require action on your part.

Amazon EKS uses AWS Key Management Service (AWS KMS) with Kubernetes KMS
provider v2 for this additional layer of security with an AWS owned key and the option for you to
bring your own customer managed key (CMK) from AWS KMS.

EKS Auto Mode capabilities

When EKS Auto Mode is enabled for a cluster, an additional set of control plane capabilities are also
enabled. In a standard Amazon EKS cluster, the components that perform auto-scaling, manage Elastic
Network Interfaces (ENIs) and Amazon EBS devices run as Kubernetes Pods on nodes in the cluster.
With Auto Mode, AWS manages these components and runs them outside of the cluster. This shifts the
operational responsibility for the health and patching of these components to AWS and moves the
components that require sensitive permissions to operate outside of the cluster.

Security Overview of Amazon EKS Auto Mode

https://aws.amazon.com/ebs
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/#configuring-the-kms-provider-kms-v2
https://kubernetes.io/docs/tasks/administer-cluster/kms-provider/#configuring-the-kms-provider-kms-v2
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

To manage compute, networking, and storage, EKS Auto Mode requires additional permissions beyond
those required in a non-Auto Mode cluster. These are normally provided by adding a set of policies to
the cluster IAM role. However, there is no requirement to attach these specific policies to the cluster
role. Custom policies can be used provided they grant sufficient permissions to Auto Mode components.

The cluster 1AM role used by EKS Auto Mode is a service role. A service role is an IAM role that a
service assumes to perform actions on your behalf. Service control policies (SCPs) apply to the
actions performed by these roles and can be used to further restrict Auto Mode capabilities, such as
limiting the instance types that can be launched. This differs from a service-linked role (SLR), which
is a type of role that is linked to an AWS service and is not restricted by SCPs. Auto Mode minimizes its
use of SLRs so that SCPs are respected when possible.

Note: Additional guidance for adjusting SCPs to allow Auto Mode to function can be found in Update
organization controls for EKS Auto Mode.

EKS Auto Mode data plane

The EKS Auto Mode data plane consists primarily of the Auto Mode nodes, the compute that your
workloads run directly on. The data plane is built to give you full flexibility and control with respect to
the types of workloads that can be run and the instances that they run on while still delegating
operational responsibility for the scaling and health of that data plane to AWS.

EC2 managed instances

EKS Auto Mode uses EC2 managed instances to provide the compute that backs an Auto Mode
node. These nodes have built-in IAM-enforced restrictions that block operations on the EC2 instances
that could compromise the ability of AWS to operate the nodes. For example, it’s not possible to change
the instance profile of a node or attach or detach ENIs. Instead, the instance role is controlled using the

NodeClass and ENI management is performed by a networking capability that is managed by AWS and
hosted on AWS infrastructure. These restrictions are applied regardless of the IAM identity and its
permissions. Even the AWS account root user is unable to circumvent these constraints.

The IAM-enforced restrictions extend past the EC2 instance itself. It also includes the Amazon EBS
volumes that are attached to the instance at launch, ENIs, and the launch templates used for launching
those managed instances.

EC2 managed instances does not provide Amazon EKS additional permissions to EKS Auto Mode nodes.
The permissions that Amazon EKS uses to manage those instances are still granted only by the cluster
service role and EKS SLR.

By building on top of EC2 managed instances, the EC2 features that customers are familiar with work as
expected. With EKS Auto Mode, customers can continue to use capacity reservations and savings plans.
Auto Mode allows full control over the instance types that are launched, providing access to the broad
range of EC2 instance types including accelerated types for machine learning inferencing and training
use cases.

Security Overview of Amazon EKS Auto Mode

https://docs.aws.amazon.com/eks/latest/userguide/auto-cluster-iam-role.html
https://docs.aws.amazon.com/eks/latest/userguide/auto-cluster-iam-role.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_examples_ec2.html#example-ec2-1
https://docs.aws.amazon.com/eks/latest/userguide/auto-controls.html
https://docs.aws.amazon.com/eks/latest/userguide/auto-controls.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-ec2-managed-instances.html
https://docs.aws.amazon.com/eks/latest/userguide/create-node-class.html

Instance configuration

EKS Auto Mode enforces a few best practices related to security during instance launch. Because the
instances are EC2 managed instances, they cannot be changed at runtime. This includes the
configuration for Instance Metadata Service (IMDS) and encryption of the root and data Amazon
EBS volumes.

IMDS is configured to use IMDSv2 (token required) with a hop limit of one, which is the maximum
number of hops that the metadata token can travel. This blocks non-host-network Pods from accessing
IMDS, through which it could access the node’s IAM credentials.

On EKS Auto Mode nodes, the root and data Amazon EBS volumes are encrypted and configured to be
deleted upon termination of the instance. Optionally the NodeClass
ephemeralStorage. kmsKeyID setting can be used to specify the encryption key to be used.

Node role and access entry

EKS access entry is the recommended mechanism to grant an IAM principal access to the Kubernetes
API. Each access entry has a type, Kubernetes username, and list of Kubernetes groups. Depending on
the access entry type, the username and groups might not be configurable. Some access entry types can
optionally have an association created with access policies. These access policies provide further
permissions to the IAM principal, beyond what might be granted based on the Kubernetes username
and group.

The standard EKS Auto Mode node access entry is of type EC2, which has a Kubernetes username of
system:node: { {SessionName}} andisinthe system:nodes group with the
AmazonEKSAutoNodePolicy access policy attached. When using an EC2 instance profile to assign
an IAM role to an EC2 instance, the SessionName is automatically set to the instance ID, leading to a
Kubernetes username of system:node:1-1234567890abcdef0 which corresponds to a
Kubernetes node name of just the instance ID, 1i-123456789%0abcdefO.

The default Amazon EKS Auto Mode IAM role uses a new AmazonEKSWorkerNodeMinimalPolicy
policy. This policy removes nine different permissions from the previous
AmazonEKSWorkerNodePolicy, retaining only the permissions required for EKS Auto Mode nodes
to operate. The AmazonEC2ContainerReqistryPullOnly policy, while generally useful, was also
created while building Auto Mode to further reduce the number of Elastic Container Registry (ECR)
permissions made available to nodes compared to the existing
AmazonEC2ContainerRegistryReadOnly policy. Lastly, Auto Mode nodes use the EC2 instance ID
as the Kubernetes node name. Because the instance ID is reliably determined through IMDS, the node
role no longer needs permissions to call ec2 :DescribeInstances to discover the private DNS
name.

Security Overview of Amazon EKS Auto Mode

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html
https://docs.aws.amazon.com/eks/latest/userguide/access-policy-permissions.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodeMinimalPolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerRegistryPullOnly
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-AmazonEC2ContainerRegistryReadOnly
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Node operating system

The operating system for EKS Auto Mode nodes is a custom variant of Bottlerocket. Bottlerocket was
selected as the underlying operating system for Auto Mode nodes because it is optimized and built
specifically for running containers and has several security enhancements over a general-purpose
operating system. It enforces cryptographic integrity checks for the root file system and mandatory
access controls using SELinux to reduce the attack surface in the event of container escape. The reduced
number of packages in Bottlerocket minimizes the surface area for potential security issues and reduces
the effort required by many compliance programs to keep hosts updated with the latest security
patches.

In Bottlerocket, most non-privileged pods will automatically have their own SELinux multi-category
security (MCS) label applied to them. This MCS label is unique to each Pod and is designed to protect
against a process in one pod manipulating a process in another Pod or on the host. Even if a labeled Pod
runs as root and has access to the host filesystem, it will be unable to manipulate files, make sensitive
system calls on the host, or access the container runtime.

The EKS Auto Mode Bottlerocket variant hardens the standard Bottlerocket configuration by disabling
features like host containers, which while useful in the standard Bottlerocket distribution are not
used in Auto Mode. In addition, remote access services like SSH and the AWS Systems Manager agent
are not available on Auto Mode nodes. While direct remote access isn’t allowed, it is still possible to
troubleshoot the node in multiple ways.

e NodeDiagnostic resource — The NodeDiagnostic custom resource definition (CRD) is a
Kubernetes-native method of fetching system logs and information from an EKS Auto Mode
node. The collected logs are uploaded automatically to an Amazon Simple Storage Service
(Amazon S3) bucket. By design, a pre-signed Amazon S3 URL is used, which enables collecting
logs from nodes without requiring that S3 permissions be added to the node role. The ability to
collect logs is controlled by limiting access to create the NodeDiagnostic object through
standard Kubernetes role-based access control (RBAC).

e Console output logs —Auto Mode periodically writes system information to the Amazon EC2
console, which can be useful for debugging issues related to permissions or network
configuration issues that stop the node from joining the cluster.

e Debug containers — Because Auto Mode is Kubernetes conformant, standard debug
containers can be used to inspect and fetch system logs on the node.

Note: EKS Auto Mode nodes are Kubernetes conformant and because of this it’s possible to run Pods on
Auto Mode nodes that provide an SSH service or run the SSM agent. In this case, the remote access
session is to the Pod itself and resides within the container boundary.

The EKS Auto Mode variant of Bottlerocket is built on the core open source Bottlerocket distribution but
adds several Auto Mode specific packages to handle things like the OS level configuration of network
interfaces that have been attached to the instance by the AWS managed networking component. When
launching instance types with Neuron or NVIDIA accelerators, a specific version of the Auto Mode

Security Overview of Amazon EKS Auto Mode

https://aws.amazon.com/bottlerocket/
https://bottlerocket.dev/en/os/1.41.x/concepts/host-containers/
https://aws.amazon.com/ssm
https://docs.aws.amazon.com/eks/latest/userguide/auto-get-logs.html
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://docs.aws.amazon.com/eks/latest/userguide/auto-troubleshoot.html#auto-node-console
https://docs.aws.amazon.com/eks/latest/userguide/auto-troubleshoot.html#auto-node-debug-logs

operating system is used that contains the appropriate drivers and Kubernetes device plugins to make
these nodes compatible with accelerated workloads without requiring further software installation or
configuration.

Node patching

Auto Mode nodes are updated by replacing the instance with a new instance running the latest Auto
Mode AMI. This process allows workloads to gracefully migrate from the unpatched node to the patched
node following Pod Disruption Budgets (PDBs) that govern the workload availability in addition to the
disruption controls configured at the NodePool level.

The Auto Mode AMlIs undergo a rigorous testing process prior to being released. This includes:

e Common vulnerabilities and exposures (CVE) scanning of included components

e Full Kubernetes node conformance tests

e Component functional testing (for example, validating that pods can obtain IAM credentials
through EKS Pod Identity)

e Security related testing (for example, testing that the node has only the expected services
listening)

e Functional testing of compatibility with both Neuron and NVIDIA accelerators

Auto Mode AMls are rolled out using standard AWS best practices for safe, hands-off

deployments. These deployments are built around an internal AWS construct called a pipeline, which
automates the build and deployment process and provides automated alarm monitoring, testing, and
other validation of safety. The process begins by deploying the newly built and tested AMI to a small
subset of EKS Auto Mode clusters in a single Region, with a bake time to detect potential issues. As
confidence in the AMI stability grows, it is gradually rolled out to more clusters in larger waves and
across more Regions, while reducing the bake time between deployments. There is additional gating
included in the deployment pipeline so that by default a new AMI is made available no more than once
per week.

The default EKS Auto Mode NodePools allow nodes to be replaced through drift after a new AMI has
been made available for their EKS cluster. Customers optionally can create their own NodePool
disruption windows to control when and how quickly nodes are updated.

The built-in EKS Auto Mode NodePools have a configured node expiration of 14 days, but customers
can create their own NodePools to raise or lower this value. To receive patches as soon as they are
made available, NodePools should not use the disruption.budgets|[].schedule setting,
which restricts the time windows that a node can be replaced.

If PDBs or NodePool disruption controls do not allow a node to be replaced before the 21-day maximum
node lifetime has been reached, the node will be disrupted regardless. This helps make sure that nodes
periodically receive security patches and updates, and that a misconfigured PDB or other failing
workload can’t indefinitely stop a node from being replaced.

Security Overview of Amazon EKS Auto Mode

https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments/
https://docs.aws.amazon.com/eks/latest/userguide/set-builtin-node-pools.html

Compute

When using EKS Auto Mode, the AWS managed compute capability is responsible for the auto-scaling of
Kubernetes worker nodes. Scaling configuration is performed using the standard Karpenter concepts
of a NodePool and NodeClass. The NodePool is a standard Karpenter NodePool. The NodeClass is
Auto Mode specific, which is the Karpenter mechanism for cloud provider specific extensions.

EKS Auto Mode supports two built-in NodePools, named systemand general-purpose that can
optionally be enabled. The system NodePool hasa CriticalAddonsOnly taint and is designed to
separate cluster-critical applications from other workloads. The general -purpose NodePool has no
taints and is designed to run other non-accelerated workloads in your cluster. The built-in NodePools, by
virtue of being created and configured using the eks : CreateClusterand
eks:UpdateClusterConfig APIcalls, allow infrastructure as code (IaC) tooling to create EKS
clusters that can run workloads immediately after cluster creation without requiring further interaction
with the Kubernetes API to create a NodePool and NodeClass.

Storage

EKS Auto Mode nodes launch with two attached Amazon EBS volumes that share the instance’s lifetime.
The first is the root volume which contains the Bottlerocket operating system, while the second is the
data volume that contains ephemeral data such as Pod logs, container images, and so on. Both volumes
are encrypted by default with EKS Auto Mode using an AWS managed key. Optionally, customers can
configure a CMK to be used for encryption of these volumes.

The block storage capability of EKS Auto Mode used for persistent volumes backed by Amazon EBS can
optionally be configured to encrypt those EBS volumes by default, including with a CMK.

Networking

The managed networking capability of EKS Auto Mode runs on AWS infrastructure and is responsible for
two separate activities. First, it handles the lifetime and attachment of ENIs to the managed instance as
needed to handle the Pods scheduled to the node. Second, it handles the lifetime and configuration of
load balancers that are required to support the IngressClass with a controller of type
eks.amazonaws.com/alb.

The NodeClass controls the subnets and security groups that are used for Auto Mode nodes and Pods
running on those nodes through the subnetSelectorTerms,
securityGroupSelectorTerms, podSubnetSelectorTerms, and
podSecurityGroupSelectorTerms. The subnetSelectorTerms and
securityGroupSelectorTerms settings are required. If only these settings are provided, both
the node and Pods will share the same subnets and security groups. The node IP and subsequent Pod IP
addresses will be allocated from the primary ENI and additional ENIs will be dynamically created and
attached to the node to support Pods as needed.

Security Overview of Amazon EKS Auto Mode 0

https://karpenter.sh/
https://docs.aws.amazon.com/eks/latest/userguide/create-node-pool.html
https://docs.aws.amazon.com/eks/latest/userguide/create-node-class.html
https://docs.aws.amazon.com/eks/latest/userguide/set-builtin-node-pools.html
https://docs.aws.amazon.com/eks/latest/userguide/auto-kms.html
https://docs.aws.amazon.com/eks/latest/userguide/create-storage-class.html
https://docs.aws.amazon.com/eks/latest/userguide/create-node-class.html

[}

i Also configuring
| podSubnetSelectorTerms &

I podSecurityGroupSelectorTerms

Configuring
subnetSelectorTerms &
securityGroupSelectorTerms

E Auto Mode Node

Auto Mode Node

Security group Security group
Prima
N 15 < Node IP & ENI

/

~ Secondary
] ENI

Secondary e
ENI]

|
|
|
|
|
|
|
|
1
|
|
1
|
|
1
|
|
|
Secg;cliary = > Pod IPs | Security group
I
! E
|
1
|
|
|
|

]
]
]
]
]
]
]
]
]
1
]
]
]
]
:
1
Primary :
]
]
]
]
]
1
1
]
]
]
]
]
]
1
]
]
1

I

I

I L Secondary
| ENI

I

[}

Figure 4: NodeClass IP assignment settings

If podSubnetSelectorTerms and podSecurityGroupSelectorTerms are also
configured, then only the node’s IP will come from the primary ENI. Pod IPs will come from secondary
ENIs and use the specified security groups. This mode of operations allows segregating the node IP
addresses from Pod IP addresses, primarily to allow using separate security groups to control traffic flow
for nodes and Pods differently. Because the primary ENI is reserved for only the node IP address, when
operating in this configuration the result is reduced Pod density on Auto Mode nodes.

After being enabled on the cluster, Pod-to-Pod traffic can be controlled by using standard Kubernetes
NetworkPolicies. These policies are enforced by a networking component on the node using eBPF.

The EKS Auto Mode NodeClass also offers several settings for more advanced networking use cases:

o advancedNetworking.httpsProxyand advancedNetworking.noProxy -
Controls the HTTPS PROXY and NO PROXY settings for containerd and kubelet.

e certificateBundles - Certificate bundles for custom certificate authorities (CA) to be
trusted by the node. This is most often used when pulling container images from a private
container registry that uses self-signed certificates.

o advancedNetworking.associatePublicIPAddress - Controls the setting of the
AssociatePublicIpAddress property on the launch template used for launching EKS
Auto Mode nodes. This setting will need to be set to false if SCPs require it to allow Auto Mode
to launch EC2 instances.

Security Overview of Amazon EKS Auto Mode 1

https://docs.aws.amazon.com/eks/latest/userguide/auto-net-pol.html
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://ebpf.foundation/

Node component Kubernetes RBAC

Several of the built-in node components require access to the Kubernetes API server to function. For
example, the DNS component needs to list services and the node monitoring component needs to
access NodeDiagnostic resources to respond to log collection requests. This access is provided by
the AmazonEKSAutoNodePolicy access policy.

Instead of providing the union of all permissions to the kubelet RBAC identity through this access policy,
a more restrictive approach was taken. The components begin by using the kubelet’s identity and then
use standard Kubernetes impersonation to assume an identity with only the specific permissions that
the component needs. After this identity assumption has occurred, the component only has the new
permissions. This will be visible in the Kubernetes audit logs by the addition of an
impersonatedUser property on the audit event:

"impersonatedUser": {
"username": "eks-auto:component-name",
"groups": [
"system:authenticated"

Workloads

With EKS Auto Mode, customers continue to maintain responsibility for their application containers,
including availability, security, and monitoring. Auto Mode provides a solid foundation to build upon,
but there are several areas where following EKS best practices can improve the security posture of those
workloads.

Configuration

Because EKS Auto Mode nodes are Kubernetes conformant, standard Pod-level configurations work as
expected. For example, the Pod securityContext field can be used to give additional permissions
to Pods and volumeMounts can be used to provide access to the host filesystem. Even then, Pods
however still face the restrictions provided by SELinux and a read-only root filesystem on the node. You
can use Kubernetes policy enforcement tools like Kyverno or OPA Gatekeeper to limit Pod-level
configuration within a cluster. Additional guidance for Pod security can be found in the EKS Best
Practices quide.

To vend IAM credentials to Pods within a cluster, EKS Auto Mode nodes include built-in support for EKS
Pod Identity. When a Pod is launched using a Kubernetes service account that is configured with Pod
Identity, the Kubernetes control plane injects a set of environment variables into the Pod. These
environment variables cause the AWS SDK to request credentials from the Pod Identity component that
Auto Mode has preconfigured on the Node. This process involves the AWS SDK fetching the Pod’s

Security Overview of Amazon EKS Auto Mode 1

https://docs.aws.amazon.com/eks/latest/userguide/auto-get-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/access-policy-permissions.html
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://kyverno.io/
https://open-policy-agent.github.io/gatekeeper/website/
https://docs.aws.amazon.com/eks/latest/best-practices/pod-security.html
https://docs.aws.amazon.com/eks/latest/best-practices/pod-security.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-identities.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-identities.html

service account token, assigned by the Kubernetes API server, and exchanging it for IAM credentials via
the eks—auth:AssumeRoleForPodIdentity API. Thisis the only permission on the managed

AmazonEKSWorkerNodeMinimalPolicy policy.

Note: |AM roles for service accounts (IRSA) can also be configured to provide credentials to Pods,
while Pod Identity remains the recommended method.

Runtime monitoring

Runtime monitoring observes and analyzes operating system level, networking, and file events to help
you detect potential threats in the workloads in your environment. This can include detection of issues
such as container breakouts, creation of reverse shells, or elevation of privileges.

Because EKS Auto Mode nodes are fully Kubernetes conformant, runtime monitoring systems that are
compatible with Kubernetes nodes should work with Auto Mode nodes. We recommend using

Amazon GuardDuty or a third-party solution that is validated to work with Auto Mode for runtime
monitoring. The full list of runtime issues that GuardDuty can detect is available in GuardDuty
Runtime Monitoring finding types.

Conclusion

Amazon EKS Auto Mode represents a significant evolution in how customers can run Kubernetes on
AWS. This whitepaper covers the security related aspects of EKS Auto Mode, including some of the
design decisions that customers can make to shift their focus from infrastructure management to
application development.

Contributors
Contributors to this document include:

o Todd Neal, Principal Engineer, Amazon EKS

Further reading
For additional information, see:

e Amazon EKS Auto Mode User Guide

e Amazon EKS Best Practices Guide

e Shared Responsibility Model

e Security Best Practices in IAM

e Update organization controls for EKS Auto Mode
e Under the Hood: Amazon EKS Auto Mode

Security Overview of Amazon EKS Auto Mode 13

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodeMinimalPolicy.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/eks-runtime-monitoring-guardduty.html
https://docs.aws.amazon.com/guardduty/latest/ug/findings-runtime-monitoring.html
https://docs.aws.amazon.com/guardduty/latest/ug/findings-runtime-monitoring.html
https://docs.aws.amazon.com/eks/latest/userguide/automode.html
https://docs.aws.amazon.com/eks/latest/best-practices/introduction.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/eks/latest/userguide/auto-controls.html
https://aws.amazon.com/blogs/containers/under-the-hood-amazon-eks-auto-mode/

Document revisions

Date Description

September 18, 2025 First publication

Security Overview of Amazon EKS Auto Mode 1

