
Archived
SaaS Solutions on AWS

Tenant Isolation Architectures

January 2016

This paper has been archived.
For the most update content, see
https://d1.awsstatic.com/whitepapers/saas-tenant-
isolation-strategies.pdf

https://d1.awsstatic.com/whitepapers/saas-tenant-isolation-strategies.pdf

Archived

© 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents AWS’s
current product offerings and practices as of the date of issue of this document,
which are subject to change without notice. Customers are responsible for
making their own independent assessment of the information in this document
and any use of AWS’s products or services, each of which is provided “as is”
without warranty of any kind, whether express or implied. This document does
not create any warranties, representations, contractual commitments,
conditions or assurances from AWS, its affiliates, suppliers or licensors. The
responsibilities and liabilities of AWS to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

Archived

Contents
Introduction 1

Common Solution Components 1

Security and Networking (Tenant Isolation Modeling) 1

Identity Management, User Authentication, and Authorization 2

Monitoring, Logging, and Application Performance Management 2

Analytics 3

Configuration Management and Provisioning 4

Storage, Backup, and Restore Capabilities 4

AWS Tagging Strategy 5

Chargeback Module 6

SaaS Solutions – Tenant Isolation Architecture Patterns 7

Model # 1 – Tenant Isolation at the AWS Account Layer 8

Model # 2 – Tenant Isolation at the Amazon VPC Layer 11

Model # 3 – Tenant Isolation at Amazon VPC Subnet Layer 14

Model # 4 – Tenant Isolation at the Container Layer 15

Model # 5 – Tenant Isolation at the Application Layer 17

General Recommendations 20

Conclusion 21

Contributors 22

Further Reading 22

APN Partner Solutions 22

Additional Resources 23

Archived

Abstract
Increasingly, the mode of delivery for enterprise solutions is turning toward the
software as a service (SaaS) model, but architecting a SaaS solution can be
challenging. There are multiple aspects that need to be taken care of, and a
variety of options for deploying SaaS solutions on AWS. This paper covers the
different SaaS deployment models and the combination of AWS services and
AWS Partner Network (APN) partner solutions that can be used to achieve a
scalable, available, secure, performant, and cost-effective SaaS offering.

AWS now offers a structured AWS SaaS Partner Program to help you build,
launch, and grow SaaS solutions on AWS. As your business evolves, AWS will be
there to provide the business and technical enablement support you need.
Please review the SaaS Partner Program website for more details.1

http://aws.amazon.com/partners/saas/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 1 of 26

Introduction
There are a variety of solutions that can be deployed in a SaaS model, and these
share a number of similarities and common patterns. In this paper, we will
discuss:

• Common solution components – These are aspects that we
recommend handling separately from the core, solution-related
functional components, such as billing, monitoring, and analytics. We
will discuss these components in detail.

• SaaS solution - tenant isolation architecture patterns – A solution
can be deployed in multiple ways on AWS. We will discuss typical
models that help with the requirements around a multi-tenant SaaS
deployment, along with considerations for each of those cases.

This white paper focuses on the technology and architecture aspects of SaaS
deployments, and does not attempt to address business and process-related
aspects, such as software vendor licensing, SLAs, pricing models, and DevOps
practice considerations.

Common Solution Components
In addition to building the core functional components of your SaaS solution,
we highly recommend that you build additional supporting components that
will help in future-proofing your solution and making it easier to manage.
Building additional supporting components will also enable you to easily grow
and add more tenants over time. The following sections discuss some of the
recommended supporting components for SaaS solution setups.

Security and Networking (Tenant Isolation Modeling)
The first step in any multi-tenant system design is to define a strategy to keep
the tenants secure and isolated from one another. This may include security
considerations such as defining segregation at the network/storage layer,
encrypting data at rest or in transit, managing keys and certificates safely, and
even managing application-level security constructs. There are a number of
AWS services you can use to help address security considerations at each level,
including AWS CloudHSM, AWS CloudTrail, Amazon VPC, AWS WAF, Amazon
Inspector, Amazon CloudWatch and Amazon CloudWatch Logs.2 By using

https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/vpc/
https://aws.amazon.com/waf/
https://aws.amazon.com/inspector/
https://aws.amazon.com/inspector/
https://aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 2 of 26

native AWS services such as these, you can define a model that matches the
solution’s security and networking requirements. In addition to AWS native
services, many customers also make use of APN Partner offerings in the
infrastructure security space to augment their security posture, and add
capabilities like intrusion detection systems (IDS)/intrusion prevention systems
(IPS).3

Identity Management, User Authentication, and
Authorization
It’s important to decide on the strategy for authenticating and authorizing users
to manage both the AWS services and the SaaS application itself. For AWS
services, you can use AWS Identity and Access Management (IAM) users, IAM
roles, Amazon Elastic Compute Cloud (Amazon EC2) roles, social identities,
directory/LDAP users, and even federated identities using SAML-based
integrations.4 Likewise, for your application, you have multiple ways to
authenticate users. We recommend building a layer that supports your
application authentication requirements. You might consider Amazon Cognito-
based authentication for mobile users, and you can also look to APN Partner
offerings in the identity and access control space for managing authentication
across different identity providers.5

Monitoring, Logging, and Application Performance
Management
You should have monitoring enabled at multiple layers, not only to help
diagnose issues, but also to enable proactive measures to avoid issues down the
road. You can benefit from utilizing the data from Amazon CloudWatch, which
enables detailed monitoring for critical infrastructure, and lets you configure
alarms to notify you of any issues.6 You could also make use of AWS Config that
provides you with an AWS resource inventory, configuration history, and
configuration change notifications to enable security and governance.7 For
application-level monitoring, you could use the Amazon CloudWatch Logs
functionality to stream the logs in real time to the service; in addition, you can
search for patterns, and you can also track the number of errors that occur in
your application logs and configure Amazon CloudWatch to send you a
notification whenever the rate of errors exceeds a threshold you specify. Many

https://aws.amazon.com/security/partner-solutions/#infrastructure
https://aws.amazon.com/iam/
https://aws.amazon.com/cognito/
https://aws.amazon.com/security/partner-solutions/#iac
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/config/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 3 of 26

companies also use APN Partner offerings in the logging and monitoring space
to monitor application performance aspects.8

Analytics
Most SaaS solutions have a wealth of raw data, including application logs, user
access logs, and billing-related data, which generally can provide a lot of insight
if properly analyzed. In addition to batch-oriented analysis, you can do real-
time analytics to see what kind of actions are being invoked by various tenants
on the platform, or look at real-time infrastructure-related metrics to detect any
unexpected behavior and to preempt any future problems. You can use AWS
services such as Amazon Elastic MapReduce (Amazon EMR), Amazon Redshift,
Amazon Kinesis, Amazon Machine Learning, Amazon QuickSight, Amazon
Simple Storage Service (Amazon S3), and Amazon EC2 Spot Instances to build
these types of capabilities.9

Analytics is normally an ancillary function of a platform in the early stages, but
as soon as multiple tenants are on-boarded to a SaaS platform, analytics quickly
becomes a core function for detecting and understanding usage patterns,
providing recommendations, and driving decisions. We recommend that you
plan for this layer early in the solution development cycle. Figure 1 shows some
of the AWS big data services and their capabilities, ranging from data ingestion
to storage to data analytics/processing.

Figure 1: AWS Big Data and analytics services

https://aws.amazon.com/security/partner-solutions/#log-monitor
https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/redshift/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/quicksight/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/spot/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 4 of 26

Configuration Management and Provisioning
AWS provides a number of possibilities for automating solution deployments.
You have the ability to bake some deployment tasks within the Amazon
Machine Images (AMIs) themselves, and you can automate more configurable
or frequent changes using various other means:

One-time tasks like OS hardening or setting up specific versions of run-time
environments that do not change without an application re-certification process
(like a Java upgrade), or even time-consuming installations (like
middleware/database setup) can be baked into the AMI itself.

To handle more frequently changing aspects of deployment, like code updates
from a code repository, boot-time tasks (like joining a domain/cluster), and
certain environment-specific configurations (like different parameters for
dev/test/production), you can use custom scripts in the EC2 instance’s user data
section or AWS services such as AWS CodeCommit, AWS CodePipeline, and
AWS CodeDeploy.10

For complete stack spin-up, a higher level of automation can be achieved by
using AWS CloudFormation, which gives developers and systems administrators
an easy way to create and manage a collection of related AWS resources, and
enables them to provision and update those resources in an orderly and
predictable fashion.11 Depending on your requirements, AWS Elastic Beanstalk
and AWS OpsWorks can also help with quick deployments and automation.12

With the right mix of segregation across different types of tasks, you can achieve
the correct balance between faster boot time (often needed for auto scaled
layers) and a configurable, automated setup (needed for flexible deployments).

Storage, Backup, and Restore Capabilities
Most AWS services have mechanisms in place to perform backup so that you can
revert to a last known stable state if any newer changes need to be backed out.

Features, including Amazon EC2 AMI creation or snapshotting (Amazon EBS,
Amazon RDS, and Amazon Redshift snapshots) can potentially support a
majority of backup requirements. However, for advanced needs, such as the
need to quiesce a file system and then take a consistent snapshot of an active

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/opsworks/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 5 of 26

database, you can use third-party backup tools, many of which are available on
AWS Marketplace.13

AWS Tagging Strategy
To help you manage instances, images, and other Amazon EC2 resources, you
can assign your own metadata to each resource in the form of tags. We
recommend that you adopt a tagging strategy before you begin to roll out your
SaaS solution. Each tag consists of a key and an optional value, both of which
you define. You can also have multiple tags on a single resource. There are two
main uses of tags:

1. General management of resources: Tags enable you to categorize your
AWS resources in different ways, such as by purpose, owner, or
environment. This can simplify filtering and searching across different
resources. You can also use resource groups to create a custom console
that organizes and consolidates the information you need based on your
project and the resources you use.14 You can also create a resource group
to view resources from different regions on the same screen, as shown in
Figure 2.

Figure 2: AWS resource groups

https://aws.amazon.com/marketplace/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-are-resource-groups.html

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 6 of 26

2. Billing segregation: Tags enable cost allocation reports and allow you to
get cost segregation based on a particular business unit or environment,
depending on the tagging strategy used.15 This along with AWS Cost
Explorer can greatly simplify the billing data related visibility &
reports.16

Chargeback Module
Another important aspect of a multi-tenant system is cost segregation across
tenants based on their usage. From an AWS resources perspective, tagging can
be a great resource to help you separate out usage at a macro level. However,
for most SaaS solutions, greater controls are needed for usage monitoring, so we
recommend that you build your own custom billing module as needed.

A billing module could look like the high-level, generic example shown in
Figure 3.

Figure 3: Sample metering and chargeback module

• All of the resources that are launched, stopped, and terminated are
tracked, and the data is then sent to an Amazon Kinesis stream.

• Granular measurements, such as the number of API requests made or the
time taken to process any request, are tracked and the data is then fed
into the Kinesis stream in real time.

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 7 of 26

• Two types of consumer applications can process the data stored in
Amazon Kinesis:

o A consumer fleet that generates real-time metrics on how the system
is being utilized by various tenants. This may help you make decisions
such as whether to throttle a particular tenant’s usage, or perform
other corrective actions based on real-time feeds.

o A second set of a Kinesis consumer fleet could aggregate the
continuous feed and generate monthly or quarterly usage reports for
billing. It could also provide usage analytics for each tenant by
processing the raw data and storing it in Amazon Redshift. For
historical data processing or transformation, Amazon EMR can be
used.

SaaS Solutions – Tenant Isolation
Architecture Patterns
There are multiple approaches to deploying a packaged solution on AWS,
ranging from a fully isolated deployment to a completely shared SaaS-type
architecture, with many other deployment options in between. In order to
support any of the deployment options, the solution or application itself should
be able to support that SaaS multi-tenancy model, which is the basic
assumption we will take here before diving deep into AWS-specific components
of different deployment models.

The decision to pick a particular AWS deployment model depends on multiple
criteria, including:

• Level of segregation across tenants and deployments

• Application scalability aspects across tenant-specific stacks

• Level of tenant-specific application customizations

• Cost of deployment

• Operations and management efforts

• End-tenant metering and billing aspects

The different choices are a “Rubik’s cube” of options that impact one another in
potentially unforeseen ways. The goal of this paper is to help with these multi-

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 8 of 26

dimensional, unforeseen impacts. The following sections describe some of the
SaaS deployment models on AWS, and include a pros and cons section for each
option, to help guide you to the optimal solution given your business and
technical requirements, as below:

Model #1 – Tenant Isolation at the AWS Account Layer

Model #2 – Tenant Isolation at the Amazon VPC Layer

Model #3 – Tenant Isolation at Amazon VPC Subnet Layer

Model #4 – Tenant Isolation at the Container Layer

Model #5 – Tenant Isolation at the Application Layer

Model # 1 – Tenant Isolation at the AWS Account
Layer
In this model, all the tenants will have their individual AWS accounts and will be
isolated to an extent. In essence, this is not truly a multi-tenant SaaS solution,
but can be treated as a managed solution on AWS.

Figure 4: Tenant isolation at AWS account layer

Pros:
• Tenants are completely separated out, and they do not have any overlap,

which can provide each tenant with a greater sense of security.

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 9 of 26

• Solution or general configuration customizations are easy, because every
deployment is specific to a tenant (or organization).

• It’s easy to track AWS usage, because a separate monthly bill is generated
for each tenant (or organization).

Cons:
• This option lacks the resources and cost optimizations that can be

achieved by the economies of scale provided by a multi-tenant SaaS
model.

• With a large number of tenants, it can become challenging to manage
separate AWS accounts and individual tenant deployments from an
operations perspective.

• As a best practice, all the AWS account root logins should be multi-factor
authentication (MFA) enabled. With ever-increasing individual tenant
accounts, it becomes difficult to manage all the MFA devices.

Best Practices:
• Centralized operations and management – IAM supports delegating

access across AWS accounts for accounts you own using IAM roles.17
Using this functionality, you can manage all tenants’ AWS accounts
through your own common AWS account by assuming roles to perform
various actions (such as launching a new stack using AWS
CloudFormation or updating a security group configuration), instead of
having to log in to each AWS account individually. You can utilize this
functionality by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), and the API.18 Figure 3 provides a snapshot of
how to set this up from the AWS Management Console.

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-crossacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-crossacct.html
https://aws.amazon.com/console/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 10 of 26

Figure 5: Cross-account, IAM role-based access setup

Figure 6: Cross-account, IAM role-based access switching

• Consolidated AWS billing – You can use the Consolidated Billing
feature to consolidate payment for multiple AWS accounts within your
organization by designating one of them to be the payer account.19 With
Consolidated Billing, you can see a combined view of AWS charges

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 11 of 26

incurred by all accounts, and you can get a detailed cost report for each
individual AWS account associated with your payer account.

Figure 7: AWS consolidated billing

• VPC peering – If you would like to have a central set of services (say, for
backup, anti-virus, OS patching, and so on), you can use a VPC peering
connection in the same AWS region between your common AWS account
that has these shared services and the respective tenant’s AWS account.
However, note that you are charged for data transfer within a VPC
peering connection at the same rate as data transfer across Availability
Zones. Therefore, you should factor this cost into the solution’s overall
cost modeling exercise.

Model # 2 – Tenant Isolation at the Amazon VPC
Layer
In this model, all the tenant solution deployments are in the same AWS account,
but the level of separation is at the VPC layer. For every tenant deployment,
there’s a separate VPC, which provides logical separation between tenants.

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 12 of 26

Figure 8: Tenant isolation at VPC layer

Pros:
• Everything is in a single account, so this model is easier to manage than a

multi-account setup.

• There’s appropriate isolation between different tenants, because each
one lives in a different VPC.

• Compared with the previous model, this model provides better
economies of scale and improved utilization of Amazon EC2 Reserved
Instances, because all reservations and volume pricing constructs are
applicable on the same AWS account. However, if Consolidated Billing is
used, this model provides no advantage over the previous model,
because Consolidated Billing treats all the accounts on the consolidated
bill as one account.

Cons:
• Amazon VPC-related limits will have to be closely monitored, both from

an overall account perspective and from each tenant’s VPC perspective.

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 13 of 26

• If all the VPCs need connectivity back to an on-premises setup, then
managing individual VPN connections may become a challenge.

• Even though it’s the same account, if a shared set of services needs to be
provided (such as backups, anti-virus updates, OS updates, and so forth),
then VPC peering will need to be set up from the shared services VPC to
all tenant VPCs.

• Security groups are tied to a VPC, so depending on the deployment
architecture, you may have to create and manage multiple security
groups for each VPC.

• AWS supports tagging as described in the Amazon EC2 documentation.20
However, if you need to separate usage and costs for services and
resources beyond the available tagging support, you should either build a
custom chargeback layer, or have a separate AWS account strategy to
help clearly demarcate individual tenant usage.

Best Practices:
In this setup, use tags to separate out AWS costs for each of the tenant
deployments. You can define resource groups and manage tags there, instead of
managing them at the individual resource level.21 Once you have defined the
tagging strategy, you can use the monthly cost allocation reports to view a
breakup of AWS costs by tags and segregate it as per your needs (see the sample
report in Figure 9).22

Figure 9: Sample cost allocation report

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Resources.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 14 of 26

Model # 3 – Tenant Isolation at Amazon VPC
Subnet Layer
In this model, we will discuss the case where we have a single AWS account and
a single VPC for all tenant deployments. The isolation happens at the level of
subnets, and each tenant has their own separate version of an application or
solution with no sharing across tenants. Figure 10 illustrates this type of
deployment.

Figure 10: Tenant isolation at VPC subnet layer

Pros:
• You don’t need to set up VPC peering for intercommunication.

• VPN and AWS Direct Connect connectivity to a single on-premises site is
simplified, as there is a single VPC.23

Cons:
• Isolation between tenants has to be managed at the subnet level, so

Amazon VPC network access control lists (NACLs) and security groups
need to be carefully managed.

• VPC limits are harder to manage as the number of tenants increases.
Furthermore, you can provision only a few subnets under the VPC CIDR

https://aws.amazon.com/directconnect/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 15 of 26

(Classless Inter-Domain Routing), depending on its size, and the CIDR
cannot be resized once created.

• Changing a VPC level setting (say, DHCP options set) affects all tenants
although they have their individual deployments.

• There are limits on the number of security groups and the number of
rules per security group at the VPC level, so managing those limits with
multiple tenants in the same VPC may be complicated.

Best Practices:
• To access public AWS service endpoints (like Amazon S3), utilize VPC

endpoints. This will scale better than routing the traffic for multiple
tenants through a network address translation (NAT) instance.

• To avoid hitting security group-related limits in a VPC:

o Consolidate security groups to stay under the limit.

o Don’t use security group cross-references; instead, refer to CIDR
ranges.

Model # 4 – Tenant Isolation at the Container Layer
With the advent of container-based deployment, it is now possible to have a
single instance and slice it for multiple tenant applications based on
requirements. The Amazon EC2 Container Service (Amazon ECS) helps easily
set up and manage Docker container-based deployments and could be used to
deploy tenant-specific solution components in individual containers.24 Figure 11
illustrates a scenario where different tenants’ containers are deployed in the
same VPC.

https://aws.amazon.com/ecs/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 16 of 26

Figure 11: Tenant isolation at container layer

Pros:
• You can have a higher level of resource utilization by having a container-

based model on shared instances.

• It’s easier to manage the clusters at scale, as Amazon ECS takes away the
heavy lifting involved in terms of cluster management and general fault
tolerance.

• Simplified deployments are possible, by testing a Docker image on any
test/development environment and then using simple CLI-based options
to directly put it into production.

• Amazon ECS deploys images on your own Amazon EC2 instances, which
can be further segmented and controlled using VPC-based controls. This,
along with Docker’s own isolation model, meets the security
requirements of most multi-tenant applications.

Cons:
• You can use Amazon EC2 and VPC security groups to limit the traffic on

an Amazon EC2 instance. However, you need to manage the container
configuration to control which ports are open. Managing those aspects
may become a little tedious at scale.

• Tags do not work at the Amazon ECS task (container) level, so separating
costs based on tags will not work, and a custom billing layer will be
needed.

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 17 of 26

Best Practices:
• To secure container communication beyond the controls provided by

VPC security groups, you could create a software-defined network for the
containers, using point-to-point tunneling with Generic Routing
Encapsulation (GRE) to route traffic between the container-based
subnets.

• In order to architect auto scaling functionality using Amazon ECS, use a
combination of Amazon CloudWatch and AWS Lambda-based container
deployment.25 In this setup, an AWS Lambda function is triggered by an
Amazon CloudWatch alarm to automatically add another Amazon ECS
task to dynamically scale, as shown in Figure 12.

Figure 12: Autoscaling architecture for container-based deployment

Model # 5 – Tenant Isolation at the Application Layer
This model represents a major shift from the earlier discussed models; now the
application or solution deployment is shared across different tenants. This is a
radical change and a movement toward a true multi-tenant SaaS model.
However, to achieve this model, the application itself should be designed to

https://aws.amazon.com/lambda/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 18 of 26

support multi-tenancy. For example, if we take a typical 3-tier application with
shared web and application layers, there can be some subtle variations at the
database layer (which, for example, could be either Amazon RDS or a database
on an Amazon EC2 instance):

3. Separate databases: Each tenant will have a different database for
maximum isolation. To enable the application layers to pick up the right
database upon each tenant’s request, you will need to maintain metadata
in a separate store (such as Amazon DynamoDB) where mapping of a
tenant to its database is managed.

4. Separate tables/schemas: Different database flavors have different
constructs, but another possible deployment model could be that all
tenants’ data resides in the same database, but the data is tied to
different schemas or tables to provide a level of isolation.

5. Shared database, shared schema/tables: In this model, all tenants’
data is placed together. A unique tenant ID column separates data
records for each tenant. Whenever a new tenant needs to be added to the
system, a new tenant ID is generated, additional capacity is provisioned,
and traffic routing is started to an existing or new stack.

Pros:
• You can achieve economies of scale and better resource usage and

optimization across the entire stack. As a result, this can often be the
cheapest option to operate at scale when you have shared components
across the architecture.

o For example, having a huge multi-tenant Amazon DynamoDB table
that can absorb the request spikes can be much cheaper than having
higher provisioned Amazon DynamoDB tables for individual tenants.

• It’s easy to manage and operate the stack, because it is a single
deployment. Any changes or enhancements that need to be made are
rolled out at once, rather than having to manage n different
environments.

• Network connectivity is simplified, and the challenges around the VPC
limits with other models are also subdued, because it’s a single VPC
deployment (although it may be bigger in size).

• All shared services (such as patching, OS updates, and anti-virus) are
also centralized and deployed as a single unit for all the tenants.

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 19 of 26

Cons:
• Applications need to be multi-tenant aware, so existing applications may

have to be re-architected.

• Depending on certain compliance and security requirements, co-hosting
tenants with different security profiles may not be possible.

Best Practices:
• To implement this model successfully, consider the following important

aspects:

• Often times, different tenants have their own specific needs for certain
features or customizations:

o Try to group tenants according to their requirements; tenants with
similar needs should be put on the same deployment.

o Try to build the most asked for features in the core platform or
application itself, and avoid customizations at the tenant level for
long-term maintainability.

• Closely monitor the stack for each tenant’s activities. If necessary, you
should be able to throttle or deprioritize any particular tenant’s actions
to avoid affecting other tenants adversely.

• Ensure that you have the ability to scale the stacks up and down
automatically, to address the changing needs of the tenants on a
particular stack. This should be built into the architecture, rather than
being done by manual updates.

• Use role-based and fine-grained access controls to enable access to limit
a tenant’s access across the entire stack. Amazon DynamoDB provides
fine-grained access controls, which enable you to determine who can
access individual data items and attributes in Amazon DynamoDB tables
and indexes, and the actions that can be performed on them. Using
Amazon DynamoDB in SaaS architectures can greatly reduce
complexities.

• Another important aspect to handle is the AWS cost management across
tenants according to their usage. To handle this, we recommend that you
design a custom billing layer (as explained and outlined in previous
sections) and incorporate it in the solution.

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 20 of 26

General Recommendations
Consider the following general best practices for a packaged SaaS solution
design and delivery on AWS:

• Instead of building large, monolithic application architectures, it’s often
helpful to create smaller, independent, single-responsibility services that
can be clubbed together to achieve the overall business functionality.
These smaller microservices-based architectures can be easier to
manage, and can independently scale. You could use services like
Amazon ECS and AWS Lambda to create these smaller components. AWS
Simple Queue Service (Amazon SQS) could also potentially help decouple
microservices by introducing a queuing layer in between for
communication.26 You can also use Amazon API Gateway to enable API-
based interactions between the layers, thereby keeping them integrated
just at the interface layer.27 To learn more about this microservices-
based architecture pattern, see the blog post SquirrelBin: A Serverless
Microservice Using AWS Lambda.28

• Build abstraction at each layer so that you can future-proof your solution,
by being able to change the underlying implementation without affecting
the public interfaces. Consider aspects such as where you want the
solution to be in next few years, and think about technology trends. For
example, mobile was not as big five years ago as it is today. Plan for the
future, and design your solution in a manner that is scalable and
extensible to meet future needs.

• Define a release management process to enable frequent quality updates
to the solution. AWS CodeCommit, AWS CodePipeline, and AWS
CodeDeploy can help with this aspect of your deployment.

• Keep tenant-specific customizations to a minimum, and try to build most
of the features within the platform itself. For tenant-specific
configuration metadata, AWS DynamoDB can be useful.

• Build an API for your solution or platform if it needs to integrate with
third-party systems.

• Use IAM roles for Amazon EC2, instead of using hard-coded credentials
within various application components.

https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/blogs/compute/the-squirrelbin-architecture-a-serverless-microservice-using-aws-lambda/
https://aws.amazon.com/blogs/compute/the-squirrelbin-architecture-a-serverless-microservice-using-aws-lambda/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 21 of 26

• Find ways to cost-optimize your solution. For instance, you can use
Reserved or Spot Instances, adopt AWS Lambda to design an event-
driven architecture, or use Amazon ECS to containerize smaller
functional blocks.

• Utilize Auto Scaling to dynamically scale your environment up and down,
as per load.

• Benchmark application performance to right-size your Amazon EC2
instances and their count.

• Make use of AWS Trusted Advisor recommendations to further optimize
your AWS deployment.29

• There are often custom capabilities that you may like to build into your
platform that could be supplied by a packaged solution from an APN
Technology Partner. Look for opportunities to pick and choose what to
build on your own, versus utilizing an existing solution. Leverage various
APN Partner solutions and offerings, and AWS Marketplace to augment
the features and functionalities provided by AWS services.

• Enroll in the AWS SaaS Partner Program to learn, build, and grow your
SaaS business on AWS.30

• It’s important to ensure that your solution can be effectively managed on
AWS by your firm. Another option is to work with an AWS MSP
Consulting Partner.31

• Validate your operational model using the AWS operational checklist.32

• Validate your security model using the AWS auditing security checklist.33

• Leverage various APN Partner solutions and offerings, and AWS
Marketplace to augment the features and functionalities provided by
AWS services.

Conclusion
Every packaged SaaS solution is different in nature, but they share common
ingredients. You can use the practices and architecture methodologies described
in this paper to deploy a scalable, secure, optimized SaaS solution on AWS. The
paper describes different models you can adopt. Depending on the type of SaaS
solution you’re building, using multiple models or even a hybrid approach may
suit your needs.

https://aws.amazon.com/trusted-advisor/
http://aws.amazon.com/partners/saas/
http://aws.amazon.com/partners/managed-service/
http://aws.amazon.com/partners/managed-service/
https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Auditing_Security_Checklist.pdf

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 22 of 26

Contributors
The following individuals and organizations contributed to this document:

• Kamal Arora, Solutions Architect, Amazon Web Services

• Tom Laszewski, Sr. Manager, Solutions Architects, Amazon Web Services

• Matt Yanchyshyn, Sr. Manager, Solutions Architects, Amazon Web
Services

Further Reading
APN Partner Solutions
In order to build out various functions in a custom SaaS solution, you will likely
want to integrate with popular ISV solutions across various functions. To make
your selection easy, the APN has developed the AWS Competency Program,
designed to highlight APN Partners who have demonstrated technical
proficiency and proven customer success in specialized solution areas.34 Below
are some of the AWS Competency solution pages, which you can refer to for
more details:

• DevOps: https://aws.amazon.com/devops/partner-solutions/

• Mobile: https://aws.amazon.com/mobile/partner-solutions/

• Security: https://aws.amazon.com/security/partner-solutions/

• Digital Media: https://aws.amazon.com/partners/competencies/digital-
media/

• Marketing & Commerce: https://aws.amazon.com/digital-
marketing/partner-solutions/

• Big Data: https://aws.amazon.com/partners/competencies/big-data/

• Storage: https://aws.amazon.com/backup-recovery/partner-solutions/

• Healthcare:
https://aws.amazon.com/partners/competencies/healthcare/

https://aws.amazon.com/partners/competencies/
https://aws.amazon.com/devops/partner-solutions/
https://aws.amazon.com/mobile/partner-solutions/
https://aws.amazon.com/security/partner-solutions/
https://aws.amazon.com/partners/competencies/digital-media/
https://aws.amazon.com/partners/competencies/digital-media/
https://aws.amazon.com/digital-marketing/partner-solutions/
https://aws.amazon.com/digital-marketing/partner-solutions/
https://aws.amazon.com/partners/competencies/big-data/
https://aws.amazon.com/backup-recovery/partner-solutions/
https://aws.amazon.com/partners/competencies/healthcare/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 23 of 26

• Life Sciences: https://aws.amazon.com/partners/competencies/life-
sciences/

• Microsoft Solutions:
https://aws.amazon.com/partners/competencies/microsoft/

• SAP Solutions: https://aws.amazon.com/partners/competencies/sap/

• Oracle Solutions:
https://aws.amazon.com/partners/competencies/oracle/

• AWS Managed Service Program:
http://aws.amazon.com/partners/managed-service/

• AWS SaaS Partner program: http://aws.amazon.com/partners/saas/

Additional Resources
• Details on various AWS usage and billing reports:

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-
what-is.html

• Amazon EC2 IAM roles:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-
amazon-ec2.html

• Auto scaling Amazon ECS services using Amazon CloudWatch and AWS
Lambda: https://aws.amazon.com/blogs/compute/scaling-amazon-ecs-
services-automatically-using-amazon-cloudwatch-and-aws-lambda/

• Working with Tag Editor:
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-
editor.html

• Working with resource groups:
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-
groups.html

• Backup, archive, and restore approaches on AWS:
https://d0.awsstatic.com/whitepapers/Storage/Backup_Archive_and_R
estore_Approaches_Using_AWS.pdf

https://aws.amazon.com/partners/competencies/life-sciences/
https://aws.amazon.com/partners/competencies/life-sciences/
https://aws.amazon.com/partners/competencies/microsoft/
https://aws.amazon.com/partners/competencies/sap/
https://aws.amazon.com/partners/competencies/oracle/
http://aws.amazon.com/partners/managed-service/
http://aws.amazon.com/partners/saas/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://aws.amazon.com/blogs/compute/scaling-amazon-ecs-services-automatically-using-amazon-cloudwatch-and-aws-lambda/
https://aws.amazon.com/blogs/compute/scaling-amazon-ecs-services-automatically-using-amazon-cloudwatch-and-aws-lambda/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-groups.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/resource-groups.html
https://d0.awsstatic.com/whitepapers/Storage/Backup_Archive_and_Restore_Approaches_Using_AWS.pdf
https://d0.awsstatic.com/whitepapers/Storage/Backup_Archive_and_Restore_Approaches_Using_AWS.pdf

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 24 of 26

Notes
1 http://aws.amazon.com/partners/saas/

2 https://aws.amazon.com/cloudhsm/

https://aws.amazon.com/cloudtrail/

https://aws.amazon.com/vpc/

https://aws.amazon.com/waf/

https://aws.amazon.com/inspector/

https://aws.amazon.com/cloudwatch/

http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloud
WatchLogs.html

3 https://aws.amazon.com/security/partner-solutions/#infrastructure

4 https://aws.amazon.com/iam/

5 https://aws.amazon.com/cognito/

https://aws.amazon.com/security/partner-solutions/#iac

6 https://aws.amazon.com/cloudwatch/

7 https://aws.amazon.com/config/

8 https://aws.amazon.com/security/partner-solutions/#log-monitor

9 https://aws.amazon.com/elasticmapreduce/

https://aws.amazon.com/redshift/

https://aws.amazon.com/kinesis/

https://aws.amazon.com/machine-learning/

https://aws.amazon.com/quicksight/

https://aws.amazon.com/s3/

https://aws.amazon.com/ec2/spot/

10 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-
metadata.html

https://aws.amazon.com/codecommit/

https://aws.amazon.com/codepipeline/

https://aws.amazon.com/codedeploy/

http://aws.amazon.com/partners/saas/
https://aws.amazon.com/cloudhsm/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/vpc/
https://aws.amazon.com/waf/
https://aws.amazon.com/inspector/
https://aws.amazon.com/cloudwatch/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://aws.amazon.com/security/partner-solutions/#infrastructure
https://aws.amazon.com/iam/
https://aws.amazon.com/cognito/
https://aws.amazon.com/security/partner-solutions/#iac
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/config/
https://aws.amazon.com/security/partner-solutions/#log-monitor
https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/redshift/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/quicksight/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/spot/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codedeploy/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 25 of 26

11 https://aws.amazon.com/cloudformation/

12 https://aws.amazon.com/elasticbeanstalk/

https://aws.amazon.com/opsworks/

13 https://aws.amazon.com/marketplace/

14 http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-are-
resource-groups.html

15 http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-
tags.html

16 http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-
explorer-what-is.html

17 http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-
crossacct.html

18 https://aws.amazon.com/console/

https://aws.amazon.com/cli/

19
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated
-billing.html

20
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#t
ag-restrictions

21
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Resources.ht
ml

22 http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-
tags.html

23 https://aws.amazon.com/directconnect/

24 https://aws.amazon.com/ecs/

25 https://aws.amazon.com/lambda/

26 https://aws.amazon.com/ecs/

https://aws.amazon.com/lambda/

27 https://aws.amazon.com/api-gateway/

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/opsworks/
https://aws.amazon.com/marketplace/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-are-resource-groups.html
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-are-resource-groups.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-crossacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-walkthrough-crossacct.html
https://aws.amazon.com/console/
https://aws.amazon.com/cli/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Resources.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_Resources.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://aws.amazon.com/directconnect/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/

Archived

Amazon Web Services – SaaS Solutions on AWS: Tenant Isolation Architectures

Page 26 of 26

28 https://aws.amazon.com/blogs/compute/the-squirrelbin-architecture-a-

serverless-microservice-using-aws-lambda/

29 https://aws.amazon.com/trusted-advisor/

30 http://aws.amazon.com/partners/saas/

31 http://aws.amazon.com/partners/managed-service/

32 https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf

33
https://d0.awsstatic.com/whitepapers/compliance/AWS_Auditing_Security_
Checklist.pdf

34 https://aws.amazon.com/partners/competencies/

https://aws.amazon.com/blogs/compute/the-squirrelbin-architecture-a-serverless-microservice-using-aws-lambda/
https://aws.amazon.com/blogs/compute/the-squirrelbin-architecture-a-serverless-microservice-using-aws-lambda/
https://aws.amazon.com/trusted-advisor/
http://aws.amazon.com/partners/saas/
http://aws.amazon.com/partners/managed-service/
https://media.amazonwebservices.com/AWS_Operational_Checklists.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Auditing_Security_Checklist.pdf
https://d0.awsstatic.com/whitepapers/compliance/AWS_Auditing_Security_Checklist.pdf
https://aws.amazon.com/partners/competencies/

	Introduction
	Common Solution Components
	Security and Networking (Tenant Isolation Modeling)
	Identity Management, User Authentication, and Authorization
	Monitoring, Logging, and Application Performance Management
	Analytics
	Configuration Management and Provisioning
	Storage, Backup, and Restore Capabilities
	AWS Tagging Strategy
	Chargeback Module

	SaaS Solutions – Tenant Isolation Architecture Patterns
	Model # 1 – Tenant Isolation at the AWS Account Layer
	Pros:
	Cons:
	Best Practices:

	Model # 2 – Tenant Isolation at the Amazon VPC Layer
	Pros:
	Cons:
	Best Practices:

	Model # 3 – Tenant Isolation at Amazon VPC Subnet Layer
	Pros:
	Cons:
	Best Practices:

	Model # 4 – Tenant Isolation at the Container Layer
	Pros:
	Cons:
	Best Practices:

	Model # 5 – Tenant Isolation at the Application Layer
	Pros:
	Cons:
	Best Practices:

	General Recommendations
	Conclusion
	Contributors
	Further Reading
	APN Partner Solutions
	Additional Resources

