SaaS Tenant Isolation Strategies

Isolating Resources in a Multi-Tenant Environment

August 2020

dWs$S

\-/7

Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents current AWS product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

J N 011 1 = (o1 AT 1

oo [¥ o 1o o O SRPRERER 2
The 1S0latioN MINUSET ... e e e e e e s s s reeaaeaeaeeans 2
Isolation: Security or NOiSy NeighbOor? ... 4

(Ofo]f R ESTo] F= 11 0] o I @] g o =T o] £SO 4
Y | (o TN Yo F= 11T o PR RRPR 4
o To] I E{o] =1 1 o] o PSP PUPPPPPRPPTRRIS 7
The Bridge MOGEIcccooeieeeee et e e e e e e e e e ran e e e aeaeeeeaans 10
TIier-Based ISOIAtIONccee et e e e e e e e e e e e e e e e e e aeeeeaaas 11
[dentity and ISOIATIONcooiiiiiiie e 13

Implementing SilO ISOIALIONoeiiiiiiiii e e e 14
FUIl SEACK ISOIALION ... e eas 14
Targeted Silo 1SOIAtIONovuiiiiiiieee e e e e e e e e e e 17
Silo Compute CONSIAEIALIONScceeeiiiiiiiiiiieee s e e e e e e e reaeaeeeeaaas 19
SIlO fOr @NY RESOUICEt e e e e e e e e s eeeeaaaeaeeaaas 21

Implementing POOI ISOIAtIONuuiiiiiiiiii e 21
Run-time, Policy-Based Isolation With IAM.............uuiiiiiiiiiee e 23
Scaling and Managing Pool Isolation POICIES. ... 25
Pooled Storage 1Solation SrategIeScueiee it 26
Application-Enforced P00l 1SOIAtioN..............cocciiiiiiiieee e 29
POOI fOr @NY RESOUICE.......ciii i ittt e e e e e e e e e e e s aeeeeas 30
Hiding the Details of Pooled ISOlatioN..............ccccuiiiiiiiiiee e 30

STo] EoUi[o] I I = 1 g IS o F= U= [0 PSP PPPRR 32

(@0} o o3 101 [0 o RSP 33

(©0] o1 11101 (0] £ TP 33

FUMNEI REATING. it e e e e e e e e e e e e e e s e reaeeeeaeas 33

Document Revisions

Amazon Web Services SaaS Tenant Isolation Strategies

Tenant isolation is fundamental to the design and development of software as a service
(SaaS) systems. It enables SaaS providers to reassure customers that—even in a multi-
tenant environment—their resources cannot be accessed by other tenants. This paper
will look at the full range of strategies that are commonly used by SaaS companies to
ensure that their systems are successfully isolating tenant resources while still realizing
the value proposition of the SaaS delivery model.

dWs

Amazon Web Services SaaS Tenant Isolation Strategies

Tenant isolation is one of the foundational topics that every software as a service
(SaaS) provider must address. As independent software vendors (ISVs) make the shift
toward SaaS and adopt a shared infrastructure model to achieve cost and operational
efficiency, they also have to take on the challenge of determining how their multi-tenant
environments will ensure that tenants are prevented from accessing another tenant’s
resources. Crossing this boundary in any form would represent a significant and
potentially un-recoverable event for a SaaS business.

While the need for tenant isolation is viewed as essential to SaaS providers, the
strategies and approaches to achieving this isolation are not universal. There are a wide
range of factors that can influence how tenant isolation is realized in any SaaS
environment. The domain, compliance, deployment model, and the selection of AWS
services all bring their own unique set of considerations to the tenant isolation story.

In this whitepaper, we’ll outline many of the common patterns and strategies that are
used to implement tenant isolation on AWS. The goal here is to capture some of the
common themes and challenges that span the various SaaS architecture models and
AWS technologies, while highlighting the various approaches to achieving tenant
isolation in each of these environments. This paper should equip you with a collection of
insights that will help you select the combination of isolation strategies that best align
with the realities of your environment and business model.

The Isolation Mindset

At the conceptual level, most SaaS providers would agree on the importance and value
of protecting and isolating tenant resources. However, as you dig into the details of
implementing an isolation strategy, you'll often find that each SaaS ISV has their own
definition of what is enough isolation.

Given these varying perspectives, we have outlined some tenets below that will guide
our overall value system for tenant isolation. Every SaaS provider should establish a
clear set of high-level isolation requirements that will guide their teams as they define
the isolation footprint of their SaaS environment. The following are some key tenets that
typically shape the overall SaaS tenant isolation model:

Isolation is not optional — isolation is a foundational element of SaaS and every
system that delivers a solution in a multi-tenant model should ensure that their systems
take measures to ensure that tenant resources are isolated.

dWs

Amazon Web Services SaaS Tenant Isolation Strategies

Authentication and authorization are not equal to isolation — while it is expected
that you will control access to your SaaS environments through authentication and
authorization, getting beyond the entry points of a login screen or an APl does not mean
you have achieved isolation. This is just one piece of the isolation puzzle and is not
enough on its own.

Isolation enforcement should not be left to service developers — while developers
are never expected to introduce code that might violate isolation, it's unrealistic to
expect that they will never un-intentionally cross a tenant boundary. To mitigate this,
scoping of access to resources should be controlled through some shared mechanism
that is responsible for applying isolation rules (outside the view of developers).

If there’s not out-of-the box isolation solution, you may have to build it yourself —
there are a number of security mechanisms such as AWS Identity and Access
Management (IAM) that can simplify the path to tenant isolation. These tools and their
integration with a broader security scheme often make isolation a somewhat seamless
experience. However, there may be scenarios where your isolation model is not directly
addressed by a corresponding tool or technology. The absence of a clear solution
should not represent an opportunity to lower your isolation requirements—even if that
means building something of your own.

Isolation is not a resource-level construct — in the world of multi-tenancy and
isolation, some will view isolation as a way to draw a hard boundary between concrete
infrastructure resources. This often translates into isolation model where you might have
separate databases, compute instances, accounts, or virtual private clouds (VPCs) for
each tenant. While these are common forms of isolation, they are not the only way to
isolate tenants. Even in scenarios where resources are shared—in fact, especially in
environments where resources are shared—there are ways to achieve isolation. In this
shared resource model, isolation can be a logical construct that is enforced by run-time
applied policies. The key point here is that isolation should not be equated to having
siloed resources.

Domains may impose specific isolation requirements — while there are many
approaches to achieving tenant isolation, the realities of a given domain may impose
constraints that will require specific flavor of isolation. Some high compliance industries,
for example, will require that every tenant have its own database. In these cases, the
shared, policy-based approaches to isolation may not be adequate.

dWs

Amazon Web Services SaaS Tenant Isolation Strategies

Isolation: Security or Noisy Neighbor?

The topic of isolation is often challenging to compartmentalize. Typically, companies will
think about isolation through a security and compliance lens where isolation is used to
create boundaries between resources to limit any exposure to cross-tenant access. This
is a key area of focus for isolation. However, isolation is also implemented as part of
addressing noisy neighbor and performance concerns. This is another reason data for
tenants may be isolated. For the scope of this paper, we will be including coverage of
both items with more emphasis on the security dimensions of this problem.

Part of the challenge of isolation is that there are multiple definitions of tenant isolation.
For some, isolation is almost a business construct where they think about entire
customers requiring their own environments. For others, isolation is more of an
architectural construct that overlays the services and constructs of your multi-tenant
environment. The sections below will explore the different types of isolation, and
associate specific terminology with the varying isolation constructs.

Silo Isolation

While SaaS providers are often focused on the value of sharing resources, there are still
scenarios where a SaaS provider may choose to have some (or all) of their tenants
deployed in a model where each tenant is running a fully siloed stack of resources.
Some would say that this full-stack model does not represent a SaaS environment.
However, if you've surrounded these separate stacks with shared identity, onboarding,
metering, metrics, deployment, analytics, and operations, then we’d still say this is still a
valid variant of SaaS that trades economies of scale and operational efficiency for
compliance, business, or domain considerations. With this approach, isolation is an
end-to-end construct that spans an entire customer stack. The diagram in Figure 1
provides a conceptual view of this view of isolation.

dWs

Amazon Web Services SaaS Tenant Isolation Strategies

Tenant 1 Tenant 2 Tenant N

Microservices

Figure 1 — Full Stack View of Isolation

This diagram highlights the basic footprint of the siloed deployment model. The
technologies that are used run these stacks are mostly irrelevant here. This could be a
monolith, it could be serverless, or it could be any mix of the various application
architecture models. The key concept here is that we're going to take whatever stack
the tenant has and surround it with some construct to encapsulate all the moving parts
of that stack. This becomes our boundary for isolation. As long as you can prevent a
tenant from escaping their fully encapsulated environment, you’'ve achieved the
isolation.

Generally, this model of isolation is a much simpler to enforce. There are often well-
defined constructs that will enable you to implement a robust isolation model. While this
model presents some real challenges to the cost and agility goals of a SaaS
environment, it can be appealing to those that have very strict isolation requirements.

Silo Model Pros and Cons

Each SaaS environment and business domain has its own unique set of requirements
that may make silo a fit. However, if you're leaning in this direction, you’ll definitely want
to factor in some of the challenges and overhead associated with the silo model. Below
is a list of some of the pros and cons that you need to consider if you are exploring a
silo model for your SaaS solution:

Pros

e Supporting challenging compliance models — some Saa$S providers are
selling into regulated environments that impose strict isolation requirements. The
silo provides these ISVs with an option that enables them to offer to some or all
of their tenants the option of being deployed in a dedicated model.

aws

Amazon

Cons

dWs

Web Services SaaS Tenant Isolation Strategies

No noisy neighbor concerns — while all SaaS providers should be attempting to
limit the impacts of noisy neighbor conditions, some customers will still express
reservations about the potential of having their workloads impacted by the activity
of other tenants using the system. Silo addresses this concern by offering a
dedicated environment with no potential of noisy neighbor scenarios.

Tenant cost tracking — SaasS providers are often highly focused on
understanding how each tenant is impacting their infrastructure costs. Calculating
a cost per tenant can be challenging in some SaaS models. However, the
coarse-grained nature of the silo model provides us with a simple way to capture
and associate infrastructure costs with each tenant.

Limited blast radius — the silo model generally reduces your exposure when
there may be some outage or event that surfaces in your SaaS solution. Since
each SaaS provider is running in its own environment, any failures that occur
within a given tenant’s environment will likely be constrained to that environment.
While one tenant may experience an outage, the error may not cascade through
the remaining tenants that are using your system.

Scaling issues — there are limits on the number of accounts that can be
provisioned. This limit may exclude you from selecting the account-based model.
There are also general concerns about how a rapidly growing number of
accounts might undermine the management and operational experience of your
SaaS environment. If you have 20 siloed accounts for each of your tenants, for
example, that may be manageable. However, if you have a thousand tenants,
that would likely begin to impact operational efficiency and agility.

Cost — with every tenant running in its own environment, we’re missing much of
the cost efficiency that is traditionally associated with SaaS solutions. Even if
these environments scale dynamically, you'll likely have periods of the day when
you’ll have idle resources that are going un-consumed. While this is a completely
acceptable model, it undermines the ability of your organization to achieve the
economies of scale and margin benefits that are essential to the SaaS model.

Amazon Web Services SaaS Tenant Isolation Strategies

e Agility — the move to SaaS is often directly motivated by a desire to innovate at a
faster pace. This means adopting a model that enables the organization to
respond and react to market dynamics at a rapid pace. A key part of this is being
able to unify the customer experience and quickly deploy new features and
capability. While there are measures that can be taken with the silo model to try
to limit its impact on agility, the highly decentralized nature of the silo model adds
complexity that impacts your ability to easily manage, operate, and support your
tenants.

e Onboarding automation — SaaS environments place a premium on automating
the introduction of new tenants. Whether these tenants are being onboarded in a
self-service model or using an internally managed provisioning process, you'll still
need automated onboarding. And, when you have separate siloes for each
tenant, this often becomes a much more heavyweight process. The provisioning
of a new tenant will require the provisioning of new infrastructure and, potentially,
the configuration of new account limits. These added moving parts introduce
overhead that introduces additional dimensions of complexity into the overall
onboarding automation, enabling you to focus less time on your customers.

e Decentralized management and monitoring — our goal with SaaS is to have a
single pane of glass that lets us manage and monitor all tenant activity. This
requirement is especially important when you have siloed tenant environments.
The challenge here is that you must now aggregate the data from a more
decentralized tenant footprint. While there are mechanisms that will enable you
to create an aggregate view of your tenants, the effort and energy needed to
build and manage this experience is more complex in a siloed model.

Pool Isolation

It's pretty easy to see how the silo model of isolation maps very nicely for many SaaS
companies. At the same, many companies that are moving to SaaS are seeking out the
efficiency, agility, and cost benefits of being able to have their tenants share some or all
of their underlying infrastructure. This shared infrastructure approach, which is referred
to as a pool model, adds a level of complexity to the isolation story. The diagram in
Figure 2 provides an illustration of the challenge associated with implementing isolation
in a pooled model.

dWs

Amazon Web Services

0

Tenant 1

Tenant 2

Tenant N

Microservice

Compute Compute

Microservice Microservice T1 Golf club
T2 Golf bag
Compute Compute
Compute Compute P pu i P
Storage Sorage T3 Golfbag

Microservice

Compute Compute

T

SaaS Tenant Isolation Strategies

Compute

I T3

|

Figure 2 — Pooled Isolation

In this model, you’ll notice that our tenants are consuming infrastructure that is shared
by all tenants. This enables the resources to scale in direct proportion to the actual load
being imposed by the tenants. To the right of the diagram, we’ve zoomed into the
compute of one of the services, highlighting the fact that tenants 1-N may all be running
side-by-side within your shared compute at any given time. You'll also notice that the
storage in this example is also shared. Here we've represented a table that is indexed
by individual tenant identifiers.

Now, while this model is a perfectly good fit for SaaS providers, you can see how this
complicates the overall isolation story. With resources being shared, it's unclear what it
would mean here to implement isolation. We can’t lean on the typical networking and
IAM constructs to create boundaries between tenants.

The key here is that—even though this is a more challenging environment to isolation—
you cannot use this as a rationale to relax the isolation requirements of your
environment. If anything, these shared model increases the chance for cross-tenant
access and, as such, it represents an area that requires you to be especially diligent
about ensuring that resources are isolated.

As we dig deeper into the pool isolation model (above), you'll see how this architectural
footprint introduces a unique blend of challenges—each of which requires its own type
of isolation constructs to successfully isolate a tenant’s resources.

Pool Model Pros and Cons

While having everything shared enables a lot of efficiency and optimization, it also
requires SaaS providers to weigh some of the tradeoffs that come with adopting this
model. In many cases, the pros and cons of the pool model end up surfacing as the

aws

e — 8

Amazon Web Services SaaS Tenant Isolation Strategies

inverse of pros and cons we covered for the silo model. The following is an outline of
the key pros and cons that are typically associated with the pool isolation model.

Pros

e Agility — as you move all tenants into a shared infrastructure model, you get all
the natural efficiencies and simplicity that streamlines the agility of your SaaS
offering. At its core, the pool model is all about enabling SaaS providers to
manage, scale, and operate all of its tenants with one unified experience.
Centralizing and standardizing the experience is foundational to enabling SaaS
providers to easily manage and apply changes to all tenants without having to
perform one-off tasks on a tenant-by-tenant basis. This operational efficiency is
key to the overall agility footprint of your SaaS environment.

e Cost efficiency — many companies are drawn to SaasS for its cost efficiency. A
big part of this cost efficiency is commonly associated with the pool model of
isolation. In a pooled environment, your system will scale based on the actual
load and activity of all of your tenants. If all the tenants are offline, your
infrastructure costs should be minimal. The key concept here is that pooled
environments can adjust to tenant load dynamically and enable you to better
align tenant activity with resource consumption.

e Simplified management and operations — the pool model of isolation gives me
one view into all the tenants in my system. | can manage, update, and deploy all
of my tenant through a single experience that touches all the tenants in my
system. This makes most aspects of the management and operations footprint
simpler.

e Innovation — the agility that is enabled by the pooled isolation model also tends
to be core to enabling SaaS providers to innovate at a faster pace. The more you
move away from distributed management and the complexity of the silo model,
the more you’re freed up to focus on the features and functions of your product.

Cons

e Noisy neighbor — the more resources are shared, the more chances there are
for one tenant to impact the experience of another. Any activity from one tenant
that puts heavy load on the system, for example, has the potential to impact
other tenants. A good multi-tenant architecture and design will try to limit these
impacts, but there’s always some chance of a noisy neighbor condition impact
one or more of your tenants in a pooled isolation model.

dWs

Amazon Web Services SaaS Tenant Isolation Strategies

Tenant cost tracking — in a silo model, it's much easier to attribute consumption
of a resource to a specific tenant. However, in a pooled model, the attribution of
resources consumption becomes more challenging. This pushes more work to
each SaasS provider as they look for ways to instrument their systems and
surface the granular data needed to effectively associate consumption with
individual tenants.

Blast radius — having all of your resources shared also introduces some
operational risk. In the silo model, when one tenant had a failure, the impact of
that failure could likely be limited to that one tenant. However, in a pooled
environment, an outage will likely impact all the tenants of your system. This can
have a significant impact on the business. This usually requires an even deeper
commitment to building a resilient environment that can identify, surface, and
gracefully recover from failures.

Compliance pushback — while there are measures you can take to isolate your
tenants in a pool model, the notion of sharing infrastructure can create situations
where customers may be unwilling to run in this model. This is especially true in
environments where the compliance or regulatory rules for a domain impose
strict constraints on the accessibility and isolation of resources. Even in these
cases, though, this may mean some portion of the system will need to be siloed
(see the bridge model below).

The Bridge Model

While silo and pool have very distinct approaches to isolation, the isolation landscape
for many SaasS providers is less absolute. As you look at real application problems and
you decompose our systems into smaller services, you will often discover that your
solution will require a mix of the silo and pool models. This mixed model is what we
would refer to as a bridge model of isolation. The diagram in Figure 3 provides an
example of how the bridge might be realized in a SaaS solution.

dWs

10

Amazon Web Services SaaS Tenant Isolation Strategies

1\

/
()

M A ™

Tenant 1 Tenant 2 Tenant 3

[Web tier ’

App tier App tier App tier
(tenant 1) (tenant 2) (tenant 3)

Figure 3 - Bridge Isolation Model

This diagram highlights how the bridge model enables you to combine of the silo and
pool models. Here we have a monolithic architecture with classic web and application
tiers. The web tier, for this solution, is deployed in a pool model that is shared by all
tenants. While the web tier is shared, the underlying business logic and storage of our
application are actually deployed in a silo model where each tenant has its own
application tier and storage.

Now, imagine we were to break this monolith into microservices. You can imagine that
each of the various microservices in our system could leverage combinations of the silo
and pool models. We'll dig into that more as we get into the specifics of applying silo
and pool with different AWS constructs. The key takeaway here is that your view of silo
and pool will be much more granular for environments that are decomposed into a
collection of services that have varying isolation requirements.

Bridge Model Pros and Cons

The bridge model is more a hybrid model that focuses on enabling you to apply the silo
or pool model where it makes sense. The idea here is that the values and tenets of silo
isolation still apply to each of these areas of the system. As you think about pros and
cons of the bridge model, then, you should be thinking about the tradeoffs of silo and
pool models for each resource or layer of your architecture.

Tier-Based Isolation

While most of our discussion of isolation focuses on the mechanics of preventing cross-
tenant access, there are also scenarios where the tiering of your offering might
influence your isolation strategy. In this case, it's less about how you’re isolating tenants

aws

Amazon Web Services SaaS Tenant Isolation Strategies

and more about how you might package and offer different flavors of isolation to
different tenants with different profiles. Still, this is another consideration that could
determine which models of isolation you’ll need to support to address the full spectrum
of customers you want to engage. The diagram in Figure 4 provides an example of how
isolation might vary across tiers.

Pool model - Silver tier Silo model - Premium tier
Tenant 1 Tenant 2 Tenant N Tenant 4

Microservice Microservice Microservice Microservice
Compute Compute Compute Compute Compute Compute Q§ Compute Compute

Microservice Microservice Microservice Microservice

Compute Compute [Compute Compute Compute Compute [| Compute Compute

Figure 4 — Tenant Tiering and Isolation

Here you’ll see a scenario where we a mix of silo and pool isolation models that have
been offered up as tiers to our tenants. Tenants in the silver tier are running in the
pooled environment. While these tenants are running in a shared infrastructure model,
they still fully expect that their resources will be protected from any cross-tenant access.
The tenant on the right has required you to offer them a completely dedicated (silo)
environment. To support this, the SaaS provider has created a premium tier model that
enables tenants to run in this dedicated model at what we would assume would be a
substantially higher price point.

While SaasS providers generally try to limit offering a silo model to their customers, many
SaasS businesses have this notion of a private pricing where these tenants offer to pay a
premium to be deployed in this model. In fact, SaaS companies will not publish this as
an option or identify it as a tier to limit the number of customers that chose this option. If
too many of your tenants fall into this model, you'll begin to fall back to a fully siloed
model and inherit many of the challenges that we outlined above.

To limit the impact of these one-off environments, SaaS providers will often require
these premium customers to run the same version of the product is deployed to the
pooled environment. This enables the ISV to continue to manage and operate both

dWs

Amazon Web Services SaaS Tenant Isolation Strategies

environments through a single pane of glass. Essentially, the silo environment becomes
a clone of the pooled environment that happens to be supporting one tenant.

|ldentity and Isolation

While the scope of your discussion is limited to isolation, it's important to look at how
identity connects to the isolation model. The reality is, if you are planning to isolate
tenants, you must have some way to represent and identify the tenant that is currently
accessing the resources of our SaaS environment. In many cases, identity will be used
in combination with other constructs to acquire the policies and scoping rules that are at
the core of an isolation scheme. How these policies are defined and applied will vary for
each of the isolation models and services you're consuming. Still, the basics of the
approach usually follow a pattern similar to what is shown in Figure 5.

Access
Policies

S

Identity
Provider

« User Identity
« Tenant dentity
* Role

C Deployed or run-time

Tenant Context acquired scope

A
Py Web Application |/ Scoped Access
B oI Application @ Service J @

Tenant Context Tenant Context

Figure 5 — Connecting Identity and Isolation

This diagram represents a generalization of how identity gets connected to the broader
isolation story. Here you’ll notice that, as a user is authenticated, the system will return
tenant context back to your application that includes the user’s binding to a tenant as
well as the policies that will be used to enforce isolation for that tenant. This context
then flows through all of our interactions and is used by the downstream elements of the
SaaS environment to scope access to resource (in this case a database).

How that scope is acquired and applied will vary based on the isolation model and
resources you’re consuming, but this model provides a view of the core concepts. One
key area of variation is in how the tenant scoping is determined. This scoping context
could be attached to a service when it is deployed or it could be acquired at run-time.
We'll look at both of those models as we get into the specific isolation traits for different
architecture models.

aws
13

Amazon Web Services SaaS Tenant Isolation Strategies

Now that we have a clear conceptual picture of isolation, we can turn our attention to
how these different models are actually realized with different AWS services and
constructs. In the sections below, we’ll look at the various ways that silo isolation is
used across the different layers of your SaaS architecture.

Full Stack Isolation

The first model we’ll look at is full stack silo isolation. In this scenario, where a SaaS ISV
requires all the resources of a tenant to be fully isolated, you will rely on more coarse-
grained AWS constructs to isolate your tenants. The choices you make here will likely
be largely influenced by the management, operations, and scaling profile of your
environment. The following is a breakdown of the common full stack silo isolation
mechanisms.

Account Silo Isolation

The AWS account represents one strategy that can be used to isolate tenants in a silo
model. The basic approach here is to deploy each tenant into an entirely separate
account, linking each tenant account to a parent. All of the moving parts of each tenant
stack are deployed with the stack and are operated in complete isolation. This account
boundary of isolation is often appealing to those that are running in environments that
demand a very easily described boundary each tenant. For a SaaS provider, the
account isolation model can provide a compelling story to customers that are especially
concerned about any possibility of cross-tenant access.

Let’s take a closer look at a sample architecture that uses the account-based pool
isolation model. The diagram in Figure 6 illustrates two tenants deployed into two
separate accounts.

dWs

14

Amazon Web Services SaaS Tenant Isolation Strategies

. -

o

[o

Tenant 1 Tenant 2
EOH Account B Account
Availability Zone 1 Availability Zone 2 Availability Zone 1 Availability Zone 2
H VPC (&3] | /rC
B b B
: :
NAT Gateway NAT Gateway NAT Gateway NAT Gateway
Auto Scdling group | H Auto Scaling group
Instance Instance) i Instance Instance
Auto Segling group) | Auto Scaling group
Instance Instance . Instance Instance

Figure 6 - Account-based Silo and Isolation

The architecture shown here is just an example. The actual infrastructure that lands in
your account would vary based on the technologies that were part of your SaaS
application’s technology stack. This could use containers, be serverless, or any mix of
the various AWS architecture models. The key point here is that every tenant is running
the same stack in each of these separate accounts.

While there are merits to this model, it presents real challenges when it comes to scale
and automation. There’s a rich collection of tools that can automate this experience.
However, there are constraints on this automation. They key challenge here is often
account limits. Some limits can be configured through automation. Others cannot. This
issue becomes more complicated if you want to manage and maintain separate limits
for each account.

Virtual Private Cloud (VPC) Silo Isolation

The next level of isolation to consider is within a single account. This brings us into the
realm of networking constructs where we essentially use the boundaries of the network
for each of our siloed tenant environments. The Amazon Virtual Private Cloud (Amazon
VPC) provides a natural mechanism for network-based isolation. The diagram shown in
Figure 7 provides a sample of a VPC silo model:

dWs

15

Amazon Web Services SaaS Tenant Isolation Strategies

[Tenant Routing
/’:—_’,\I/'\‘ —\
138) Sa
N8/
i ability Zone 1 i Ava ne 2 E ability Zone 1 Availability Zone 2
.-;__I___I-r """" po .'-T'r'n"_;_--_. """ : . Public subnet . _______ blicsubnet |
— [. | ! oy
[F N B b= N
o | o) ! &) | b
-/ b e/ =/ \b }_,
NAT Gateway A= NAT Gateway NAT Gateway A AT Gateway
qﬁai'n ! (O=n
SE) 9

Figure 7 — VPC Silo Isolation

Here you’ll notice that we have two separate tenant environments, each hosted in its
own VPC. The VPCs represented here using multiple availability zones to convey the
typical AWS architecture best practices. As with accounts, the resources configured in
each VPC could vary significantly for each SaaS provider. The key aspect of this
solution is that the tenants are isolated from one another via the networking constructs
that are enforced by the VPC.

The VPC provides a compelling model for those that require siloed isolation. This gets
us beyond some of the provisioning challenges of account-based isolation since the
limits are owned by the account where these VPCs reside. While this gives creates a
more centralized model for managing limits across all tenants, it does not eliminate
limits challenges. With the VPC model, you would still need to proactively monitor limits
and periodically increase them as needed. There also scenarios where a large number
of tenants could exceed the hard limits for your environment. This model does have the
upside of enabling you to place tags on your VPC and its resources to calculate tenant
costs.

While this model has advantages over account-based isolation, you'll still want to think
about scale. As the number of VPCs grows, the management and agility of this
approach (and all silo models) decreases. Overall, though, the VPC tends to offer the
best combination of options for companies that need to rely on a silo model.

aws
16

Amazon Web Services SaaS Tenant Isolation Strategies

Subnet Silo Isolation

We started with accounts, then moved to VPC as our silo model. You can get even
more granular with silo isolation by placing tenants in separate VPC subnets. With this
approach, each tenant is placed in a separate subnet within a VPC. The diagram in
Figure 8 provides an example of the subnet per tenant model.

; W Fbicsiboe T
l;-(»! : 1,
AT C NAT Gatew N
B iy
Tenant 1
&l B -
Tenant 2

Figure 8 — Subnet Silo Isolation

Here you’ll see the same multi-AZ VPC that we had with VPC isolation. However, now
you’ll notice that the tenants are actually all within the subnets of a single VPC. The
isolation of tenants in this model relies on network routing constructs to prevent any
cross-tenant access.

While this is a valid approach, it is not recommended as a preferred model. The scaling
and management of this becomes unwieldy relatively quickly. If you have a small
population of tenants, this may work out fine. Beyond that, we’d recommend using one
of the other silo isolation models described here.

Targeted Silo Isolation

As we mentioned above, silo isolation can also be applied in a much more granular
fashion where selective elements of your SaaS solution are deployed in a silo model.
Each microservice of your system and each resource those services touch has the
option of being configured in a silo model of isolation. How that silo isolation is realized
will vary across each service or construct that makes up your application. Let’s look at

dWs

17

Amazon Web Services SaaS Tenant Isolation Strategies

some sample microservice to better understand how these different dimensions of silo
isolation might land in an actual application. The diagram in Figure 9 provides a view of
these two models.

All Tenants Tenants 1-3 Tenant 4 Tenant 5

Product Order Order Order
Microservice Microservice Microservice Microservice

Iy A

TenantlD

TenantlD

Tenant1 519 Golf club Tenantd 981 77541 Tenant5 733 44321
Tenant5 468 Golf bag Tenant2 519 32094 Tenant4d 431 30983 Tenant5 115 85944
Tenant4 981 Golfcart [|Tenant3 468 51041 Tenantd 609 54914 Tenant5 468 59201
Tenant3 840 Golf bag Tenant1l 468 10948 Tenant4 824 27501 Tenant5 468 43309

All tenants

k_A K_A K_A K_A K_A
T2 T3 T5

T T4

Figure 9 — Microservice Silo Isolation

In this diagram, you'll see a system that has implemented three different microservices:
product, order, and account. The deployment and storage models of each of these
microservices highlights how isolation (for security or noisy neighbor) could land in a
SaaS environment.

Let’s review the isolation model for each of these services. The product microservice at
the top right was deployed in a complete pooled model where both the compute and the
storage are shared for all tenants. The table here reflects the fact that tenants all land
here as separate items that are indexed in the same table. The assumption here is that
we’ll be isolating this data with policies that can restrict access to tenant items in this
table. The order microservice to the right of this item is only for tenants 1 through 3. This
microservice is also implemented in a pooled model. The only difference here is that it is
supporting a subset of tenants. Essentially, any tenant doesn’t get a dedicated (silo)
deployment of the order microservice would be running in this pooled deployment (think
of it as tenants 1..N with the exception of the few that get pulled out as silo
microservices).

For the purposes of this discussion, let’s focus on the siloed services which are
represented by the dedicated order microservices (top right) and the account

aws

Amazon Web Services SaaS Tenant Isolation Strategies

microservice (bottom). You’ll notice here that we’ve deployed standalone instances of
the order microservice for tenants 4 and 5. The idea here is that these tenants had
some requirements for the order processing (compliance, noisy neighbor, and etc.) that
required this service to be deployed in a silo model. Here the compute and storage are
both dedicated entirely to each of these tenants.

Finally, at the bottom is the account microservice. It represents a silo model but only at
the storage level. The compute of the microservice is shared by all tenants but each
tenant has a dedicated database that holds its account data. In this scenario, the
isolation concern was focused exclusively on separating the data. The compute was still
enabled to be shared.

In looking at this model, you can see how the silo discussion becomes much more
granular. Security, noisy neighbor, and a variety of factors will determine how and when
you might adopt a silo isolation model for your services. They key takeaway here is that
silo is not an all-or-nothing decision. You can think about applying silo to specific
components of your application and only absorb the challenges of silo where it's
actually needed. A potential customer, for example, may be demanding silo. However,
after more a detailed discussion, you find out that there are a few specific areas of
storage and processing that concern them. This enables you to get the efficiencies of
the pool model for those parts of the system that do not require silo isolation. It also
gives you the freedom to offer this as a tier to different tenants, supporting a mix of both
silo and pool for individual services.

Silo Compute Considerations

As you look to silo the compute resources of your application (like the microservices
shown above), you'll want to think about how the isolation models of different compute
services might influence your approach. The unique attributes of the various AWS
compute services may also require you to take specific measures to ensure that your
resources are adequately isolated.

N | memem e e e e = ———

[0 [O000] (0 ;- (AT () (D

\ Tenant 1 - namespace

Container cluster

Figure 10 — Container Silo Isolation

aws
19

Amazon Web Services SaaS Tenant Isolation Strategies

Let’s start by looking at what it would mean to implement the silo model with containers.
The challenge of isolating containers is that there are cases where malicious code or
poorly configured environments can escape a container and assume privileges that
would enable one tenant to access the resources of another tenant. Fortunately,
containers offer constructs that, when used properly, can implement a robust isolation
model. The mechanisms that are used to prevent cross-tenant access can vary across
the different AWS container services. With Amazon Elastic Container Service (Amazon
ECS), for example, you'll need to create a separate cluster for each tenant to achieve
silo isolation. Amazon Elastic Kubernetes Service (Amazon EKS) introduces some
additional mechanisms that will let you silo resources within an EKS cluster. The
diagram in Figure 10 provides a look at how you would achieve silo isolation within and
EKS cluster.

This example shows two separate groupings of tenants within an EKS cluster where an
EKS namespace was used to isolate these compute resources. While namespace
provides the foundation of your silo isolation here, namespaces alone don’t provide
complete isolation. To get full isolation, you need to consider using one of the AWS or
partner sidecar solutions that can be used to further lock down the flow between
containers. AWS App Mesh and Tigera’s Calico represent two examples of solutions
that could be used to achieve this added layer of isolation.

AWS Lambda also adds a twist to the silo isolation model. When you think about a
Lambda function, you’d presume that it's already isolated since any one tenant can only
be executing a function at a given moment in time. However, if a Lambda function is
deployed with an execution role that supports all tenants, then there’s still the possibility
that this function could access a resource that belongs to another tenant. While the pool
(as we'll see below) provides us a way around this, a fully siloed version of a Lambda
function would mean that this function would not be executed by other tenants. The
diagram in Figure 11 provides an example of how you might realize full isolation in a
Lambda model.

II/_-\II IIlf‘--\\l

Tenant 1 Tenant 2

Product microservice Order microservice Product microservice Order microservice

Figure 11 — Lambda Silo Isolation

aws
20

Amazon Web Services SaaS Tenant Isolation Strategies

This diagram includes two separate tenants that have been deployed in a Lambda silo
model. Because we want to ensure that tenant will remain within tenant boundaries, we
have deployed separate functions for each tenant where these functions are configured
and deployed with a tenant specific role that constrains their access to resources that
are associated with that tenant.

This approach has pros and cons. While it can be a compelling isolation story, it is
unwieldy and may exceed limits for the Lambda service. Imagine managing and
deploying separate functions for 1K tenants. That would become difficult to manage and
would undermine the agility of your SaaS goals. At the same time, if you offered this
option to a select collection of premium tenants and limited the broader expansion of
this model, it would be more reasonable to manage and operate.

The key takeaway here is that, as you consider how to implement your silo model, you'll
also need to be thinking about how the silo model is realized on the different AWS
compute services. The strategy of silo isolation can change for each service.

Silo for any Resource

While we’ve focused in on a few key silo models here, it should be clear by now that
any resource in your SaaS architecture can typically be deployed in a silo model.
However, it should also be clear that the strategies and mechanisms for isolating each
AWS service will often vary. Isolating Amazon DynamoDB data, for example, might
mean creating separate tables for each tenant. Isolating in other storage models, might
require you to create a separate cluster for each tenant. Even Amazon Simple Queue
Service (Amazon SQS) and Amazon EventBridge have different approaches to how you
might achieve isolation. While it's beyond the scope of this paper to cover isolation
strategies for each of these services, it's important for SaaS developers to consider how
and where it may be appropriate to silo any one of these services.

The general rule of thumb here is to look at any resource and assess the noisy neighbor
and security profile for that resource. You'll have to weigh these isolation options
against the added complexities, cost, operational burden, and service limits that may
come with adopting a silo strategy for some part of your system. Finding the right
balance is often key to the success of your system.

The pool model is often the most appealing to SaaS providers. The efficiency, agility,
and cost profile of pool is frequently what motivates providers to deliver in this model. Of

dWs

21

Amazon Web Services SaaS Tenant Isolation Strategies

course, as we move resources into a shared model, we have a much more challenging
isolation story to tell. There is often a fundamental mismatch between the tools and
mechanisms that provide isolation and the nature of tenants consuming a shared
resource. This is further complicated by the fact that each resource we need to isolate in
the pool model may require a different approach to enforcing isolation. While these
challenges are real, they should not represent an opportunity to somehow relax your
isolation requirements. This just means you’ll have to work a bit harder to find the right
combination of tools and construct to isolate some resources in a pooled model.

Before we dig into some specific pool isolation techniques, let’s get a clear picture of
how the pool model changes our approach to isolation. Generally, when we talk about
isolating AWS resources, we focus on how AWS ldentity and Access Management
(IAM) can be used to control the interactions between resources. For a silo model, in
fact, IAM represents a perfectly good model for expressing your tenant isolation
policies. With the pool model, though, using these IAM constructs can be a bit more
involved. The diagram in Figure 12 provides illustration of how silo and pool require
separate isolation mindsets.

o &

Tenant 1 compute P

% : Tenant 1 instance : !
profile : '—-I ; '_-l =
£ &=

: < All tenants
I I instance profile

SR =

Tenant 2 instance
profile

All tenants compute

Figure 12 — IAM and Scoping Access

Here’s you'll see two different ways of apply IAM policies to scope access of compute
constructs. On the left we have two siloed deployments where tenants are running in
their own infrastructure. These tenants are both accessing some other resource (in this
case storage). When these instances were deployed, they were configured with
separate IAM instance profiles for each tenant (tenant 1 and tenant 2). Since this
binding was created at deployment time, we can be sure that these instances will be
prevented from accessing the resources of another tenant.

aws
22

Amazon Web Services SaaS Tenant Isolation Strategies

On the right you’ll see an example where we’ve deployed compute nodes in a pooled
model. The compute that is running here will be running on behalf of all tenants. This
reality directly impacts how we can scope the 1AM profile for the compute that is
deployed here. Instead of constraining the compute to a specific tenant, we must deploy
these compute nodes with a profile that is open enough to support all tenants. This
wider scope is where we run into the real challenges of the pool model. Now, we’ll need
to come up with new ways to implement the scoping of access that is enforced by your
SaasS solution.

Given this unique aspect of pool isolation, you’ll find that the options for implementing
pool isolation will vary significantly. While it's beyond the scope of this paper to explore
all the permutations of pool isolation, we can examine some common patterns to get a
better feel for the different strategies that are often applied. The sections that follow will
provide an overview of these strategies.

Run-time, Policy-Based Isolation with IAM

In the pooled environment, SaaS providers will typically turn to IAM to find a strategy to
isolate their resources. However, as noted above, you’ll need to be creative with how
you apply IAM to achieve isolation in a pooled model. Instead of inheriting the IAM
scoping of your compute node, you’ll need to introduce your own code that will provide
run-time enforcement of your pooled isolation model. The diagram in Figure 13 provides
a conceptual view of this model.

Isolation

manager

a Acquire context

Tenant 1

Y
[|

Scoped access
(00
E

Tenant 2

Figure 13 — Runtime Acquired Scoping

In this diagram, you’ll see that we have a microservice that needs to access some
downstream resources (databases, S3 buckets, etc.). This microservice was deployed
in a pooled model, which means that it will be processing requests from multiple
tenants. The job of this microservice is to ensure that, as it processes these requests, it

aws
23

Amazon Web Services SaaS Tenant Isolation Strategies

will apply constraints that will prevent tenants from crossing a boundary to another
tenant’s resources. In the diagram, you'll see that our microservice reaches out to the
isolation manager to acquire a scoping context that is used to control interactions with
and resources that are accessed by the code running in this microservice.

This conceptual model provides some view of the moving parts. However, to see this in
action, we need to look at a more concrete strategy that explain how this context is
express and applied. The diagram in Figure 14 provides a more in-depth look at how
IAM can be used as part of this run-time scoping of access to tenant resources.

Here you’ll see the full lifecycle of configuring and applying policies in a run-time model.
In the first step of this process, the tenant onboards to your system. During this process,
they setup the user for our tenant as well as the 1AM policies for that tenant (steps 2 and
3). Once the tenant has onboarded, we then hit the microservice of our application (step
4). Because this microservice is running in a pooled model, it has been deployed with a
broad IAM scope that enables it to access resources for all tenants. Our job, then, is to
look at each request that is sent to this service and narrow the scope of that request
based to a single tenant. We do that by asking the isolation manager for a set of
credentials that are specific to the current tenant (step 5). This isolation manager will
look-up the 1AM policies for the tenant (step 6) and generate a tenant scoped set of
credentials that are returned back to the calling microservice. Finally, this microservice
uses these credentials to access a database (step 7). With these new tenant-scoped
credential, the code of the microservice will be prevented from accessing the resources
of another tenant.

uet NS Amazon
ant = @9 Cognito

‘an e
Pro\[\s\qi\}
Tenant =
onboarding ‘F"}Ev ————
ISion tepyn
, n IAM
. P -

G Get tenant policies

ah < Microservice

Tenant scoped
credentials

(P

Tenant Context

o

Isolation
) manager
Tenant

Figure 14 — Scoping with IAM Policies

aws
24

Amazon Web Services SaaS Tenant Isolation Strategies

In this model, we’re essentially saying that our microservice will have this tenant context
applied each time it attempts to access another resource. This scoping is applied as a
matter of an agreed upon convention where the microservice is expected to always
acquire new credentials before accessing a tenant resource.

Scaling and Managing Pool Isolation Policies

While IAM policies provide powerful isolation constructs, they can also present SaaS
providers with scaling challenges. If your system has a large number of tenants with a
large population of policies, you may find that you will exceed the limits of the IAM
service. You may also find it difficult to manage these polices as the number of tenants
and the compexity of these policies grow. In these situations, some SaaS companies
will attempt to alternate approach to how they generate and manage their IAM policies
at run-time.

One approach to this challenge is to shift to a model where your IAM policies are
generated in at run-time. The idea here is to have your system implement a mechanism
that will examine the current context of a call and generate the required IAM policy on-
the-fly. This moves the policies out of IAM (since they are transient) and enables you to
address potential limits on the number of policies that are needed to support all of your
tenants. The diagram in Figure 15 provides an overview of this dynamic policy
generation mechanism.

|

G GetToken()
o Token

GenerateToken(policy)
(tenant context)

Token vending GetTemplate(context)
machine

Isolation token

manager

Policy templates

Inject tenant context
Token <Tenant-1>
generator

Policy

Figure 15 — Dynamic Policy Generation

In this flow, you’ll see that we start with the same isolation manager that we used in our
prior example. However, instead of going directly the IAM to retrieve the policies need to
scope access, we have a series of steps that are used to generate a policy. The

aws
25

Amazon Web Services SaaS Tenant Isolation Strategies

isolation manager first makes a request to the token vending machine to get a tenant
scoped token (step 1). It's the job of the vending machine to go to the templates that
you have pre-defined for your tenant isolation model (step 2). Think of these as
template files that have all of the moving parts of a traditional IAM policy. However, key
elements of the file are not filled in (those that represent our tenant context). You might,
for example, fill in a table name or the leading key condition of an Amazon DynamoDB
table with a tenant identifier.

Once you have the template that’'s needed, you now call out to the token generator to
request a token (step 3). In this step, we also provide the current tenant context. The
token generator then fills the tenant details into the template, leaving us with a fully
hydrated IAM policy (steps 4 and 5). Finally, the token generator uses this policy to
generate a token that is scoped according to the provided policy. This token is returned
back to the isolation manager (steps 6 and 7). Now, this token can be used to access
resources with the tenant context applied.

By moving these policies into templates, you take on the added responsibility of
assuring that these policies enforce your tenant isolation requirements. Ideally, the
details of this mechanism will be mostly outside the view of developers so the potential
for something to go wrong is reduced.

One upside here is the management profile of this model. Should you choose to change
something about your isolation policies, the path to applying these changes will be
much more straightforward since there won’t be a separate policy for each tenant. That,
and you’ll own the content lifecycle of these policy templates (versioning and deploying
them through your own pipeline).

Pooled Storage Isolation Strategies

Isolating data in a pooled model is an area that gets lots of attention from SaaS
providers. As data is co-mingled, SaaS developers become hyper-focused on
identifying ways to ensure that each tenant’s data is protected. In fact, while many SaaS
providers are intrigued by the cost, management, and agility profiles of the pool model,
they will often default to a silo model purely to address expected pushback they may get
from customers that will may be hesitant to accept pooling of their data.

The general notion of pool storage isolation (for any storage service) is that the data for
all tenants is represented in a shared storage construct. The diagram in Figure 16
provides an illustration of pooled storage.

aws
26

Amazon Web Services SaaS Tenant Isolation Strategies

D

All Tenants

Product
Microservice

TenantID [SKU

Tenant1 519 Golf club
Tenant5 468 Golf bag
Tenant4 981 Golf cart
Tenant3 840 Golf bag

Figure 16 — Pooled Storage

Here you’ll see that we have a product microservice that is storing its data in a pooled
model. The table has an index in the first column that represents the key for each
tenant. All of the tenant product data resides in this one table.

With this model, the challenge of isolating the data becomes much more complex. How
do you create some virtual view of this table that is constrained to just those rows that
belong to a given tenant? Also, how will this isolation be realized spanning each of the
AWS storage services? The reality is, each service may require its own unique
approach to implement isolation in the pooled model.

To get a better sense of this variation, let’s start by looking at one example of how you
might use IAM to implement pooled isolation with DynamoDB. As a fully managed
storage service, DynamoDB offers you a rich collection of IAM mechanisms to control
access to resources. This includes the ability to define a leading key condition in your
IAM policy that can restrict access to the items in a DynamoDB table. The 1AM policy
shown in Figure 17 provides an example policy that demonstrates this approach to
isolation.

The key area to focus on in this policy is the condition. This condition indicates that,
when this policy is applied, all attempts to access the DynamoDB table will be limited to
items that have key that matches the value of this leading key. So, in this case, the
tenant identifier would be in the leading key, constraining access to data for a given
tenant.

dWs

27

Amazon Web Services SaaS Tenant Isolation Strategies

"sid": "TenantReadOonlyOrderTable",

"Effect": "Allow",

"Action": [
"dynamodb:GetItem",
"dynamodb:BatchGetItem",
"dynamodb:Query",
"dynamodb:DescribeTable"

1y
"Resource": [

"arn:aws:dynamodb:us-east-1:000000000000:table/Order"
1,

"Condition": {
"ForAllvalues:Stringequals™: {
"dynamodb:LeadingKeys": [
"5bd24c40d66c4755819d28ceab9f0826"
]

Figure 17— DynamoDB Isolation with Leading Keys

Now, if we look at employing this same isolation model to Amazon Aurora PostgreSQL,
you’ll see that the mechanism is quite different. With Aurora PostgreSQL, you cannot
use IAM to scope access to data at the row level. Instead, you'll need to use the row
level security (RLS) feature of PostgreSQL to isolate your tenant data. The diagram in
Figure 18 provides a simple example of how you’d setup RLS for a product table in your
system.

-- Turn on RLS
ALTER TABLE product ENABLE ROW LEVEL SECURITY;

-- Restrict read and write actions so tenants can only see their rows
CREATE POLICY product_isolation_policy ON product
USING (tenant_id = current_tenant);

Figure 18 - Pooled Isolation with PostgreSQL RLS

The first step in configuring RLS is to alter your table to enable row level security for that
table. Then, you'll create an isolation policy for that that requires the tenant id
column to match the value of the current user (which is supplied contextually). Now,
with these changes in place, all interactions with this table will be restricted to the rows
that are valid for the current tenant.

In contrasting the DynamoDB and Aurora PostgreSQL approaches, you can see that
you’ll need to do some exploration with each storage service that you are using to find a

aws
28

Amazon Web Services SaaS Tenant Isolation Strategies

model that will let you achieve isolation. There are also cases where services may not
offer a more granular isolation model. In these cases, you’ll have to introduce your own
mechanisms to enforce your pool isolation policies.

Application-Enforced Pool Isolation

Most of our attention so far has been on strategies for using IAM as the foundation our
pooled isolation model. And, while IAM often represents a great fit for isolating
resources, there can also be scenarios where IAM may not support the flavor of
isolation that your application requires. This is where you may have to fall back and look
at introducing other frameworks or tools to control access to your application’s pooled
resources.

Application-enforced isolation typically includes some model where you express policies
(much like you do with IAM). These same frameworks often include policy enforcement
mechanisms that will sit between you and your resources, authorizing your access to
the resources. The diagram in Figure 19 provides a high-level conceptual view of the
moving parts that might be part of an application-enforced policy model.

@ furentote | Adnentcaton | NN
Tenant 1 |)

Bind policy to
identity
Compute node Identity policy Tenant access
manager policy manager

Application-enforced
tenant policy %

Resource Application-
managed policies

Figure 19 — Application-enforced Pool Isolation

In this example, your tenant would authenticate against an identity provider and
introduce some construct that will identify the policies that were defined for this specific
user (this could also happen in a downstream process). The key here is that the policies
would then be connected to your user’s identity, enabling downstream operations apply
these policies in the context of a given user. Once you’ve authenticated, your identity
would flow through the services of your system. Here there would need to be a library or

aws
29

Amazon Web Services SaaS Tenant Isolation Strategies

process that would sit between your code and the resource you’re attempting to access,
applying the policies that were bound to you as a user.

Note: This approach is only meant to represent a conceptual model. The
strategies that are employed by each framework may take a different approach to
expressing and applying their policies.

It's worth noting that the boundaries of policy-based isolation and role-based access
control (RBAC) often get blurred as part of this discussion. The tooling here, in fact,
often contributes to this confusion. As a generality, though, we wouldn’t want to equate
RBAC to tenant isolation. In many cases, RBAC has a functional mapping where user
roles (defined by an application) are used to control access to a system’s functionality.
That scope is different than drawing boundaries of isolation between the tenants of your
system, which is less about a functional goal and more about preventing one tenant
from accessing another tenant’s data.

Pool for any Resource

Our coverage of pool here highlights the fundamental moving parts of implementing a
pooled strategy. However, it does not touch on how pool might land in every AWS
service. That is beyond the scope of this paper. That being said, the concepts and
tradeoffs of pool isolation tend to be similar for most resources. As you look at the range
of additional AWS services, you'll find yourself balancing the available isolation
mechanisms with the efficiency of having a resource that is shared by tenants. In an
ideal scenario, you could use a pooled model for every resource and still achieve all of
your isolation goals. The reality is, though, you'll find scenarios where the isolation
model for some resources will be challenging. In these cases, this may push you toward
a silo model. That, or you'll absorb the effort to use some flavor of application-enforced
isolation to realize your isolation goals.

Hiding the Details of Pooled Isolation

As we mentioned above, one key aspect of the pool model is that it relies on developers
to conform to the overall model. Developers must, as a matter of convention, acquire
the scoped context before accessing resources. Given the importance of compliance
with this model, you'll often see companies creating mechanisms that simplify a
developer’s ability to align with the isolation policies adopted as part of a SaaS offering.

aws
30

Amazon Web Services SaaS Tenant Isolation Strategies

The general approach here fits very much with common design best practices. This
usually translates into the creation libraries, modules, or lightweight frameworks that are
shared by teams. The goal here is to move the mechanics of acquiring a scoped context
into shared constructs that can be leveraged across your team. This diagram in Figure
20 provides a conceptual view of this notion of hiding away the details of isolation.

{ WT | wt

Product service

QOrder service

getScopedCreds()

Token getTenantld() Isolation getTenantPolicy() Policy
manager manager manager

Shared library

Figure 20 - Using Libraries for Isolation Standardization

Here you’ll see that we have two microservices (product and order) that need to acquire
credential to comply with the pooled isolation model of our system. What we’ve done
here is moved all of the code and details of this process to shared libraries (these are
not separate microservices). When our microservice needs scoped credentials, it will
call into the isolation manager, passing in a JWT token that that was supplied to the
microservices. This isolation manager will then get the tenantId from the token
manager, which owns all the logic associated with cracking open the JWT and
extracting tenant information. It will then get the policy for this tenant from the policy
manager and use that policy to get a set of tenant-scoped credentials. These
credentials would then be returned to the calling service.

There’s nothing especially unique about this approach. This is simply applying the basic
strategy of ensuring that reusable constructs are extracted so they can be versioned
and shared more universally by your team. The key concept here is that you should
attempt to push as much of the details of tenant isolation away from the view of your
developers, making as simple as possible for them to apply your isolation scheme.

How you choose to implement this could also be influenced by the stack or compute
construct that your application uses. With Lambda, for example, it may make sense to
move these libraries to Lambda Layers where these horizontal concepts are versioned
separately and universally referenced by you Lambda functions.

aws
31

Amazon Web Services SaaS Tenant Isolation Strategies

You may also look to introduce mechanisms that will take this completely outside of the
view of your developers, intercepting and acquiring these scoped credentials before you
get into the implementation of your microservices. With some languages, for example,
you could use aspects to intercept incoming requests, acquire the scoped credentials,
and inject them into the microservice. With Lambda functions, there are various open
source wrapper libraries that could be used to inject scoped credentials into a Lambda
functions. For some, these strategies may provide a stricter model for enforcing
isolation

We’'ve talked about isolation mostly based on how it is realized within the design and
architecture of your application. However, it's important to also think about isolation from
the perspective of the tenants of your system. Even though SaaS developers and
architects are constantly weighing their isolation options, it’s still important to present
tenants with a clear and consistent story around isolation that takes them away from the
underlying details of your isolation strategy. The diagram in Figure 21 provides a
conceptual view isolation that we want to present to customers.

() (]
Tenant 1 Tenant 2

@@ P8 @@
& &

Silo Pool Silo

Figure 21 — Making Isolation Transparent

Here you’ll notice that we have two tenants that have resources. Some of the resources
are deployed in a silo model (on the left and right). Other resources for these tenants
are deployed in a pool model (in the overlapping portion of these two circles). The idea
here is that, despite the fact that there is a mix of silo and pool here, your system offers
a comprehensive approach to isolation that prevents any cross-tenant access. To your
customer, they just need assurance that this isolation is in place. |deally, they won'’t
need to know which resources are pooled and which are siloed.

aws
32

Amazon Web Services SaaS Tenant Isolation Strategies

After reviewing the isolation concepts outlined here, you should have a good sense of
the landscape of isolation options you'll need to consider as you build out a SaaS
solution on AWS. We explored a number of key patterns here, highlighting different
models for implementing isolation that are directly influenced by the domain,
compliance, operations, and performance profile of your SaaS application. We focused
much of this discussion on the silo and pool isolation models, exploring the nuances of
how these models are realized in different SaaS models. We also looked at how your
isolation strategies can be influenced by the AWS services that are used to build your
SaaS environment.

While implementing isolation can add layers of complexity to your SaaS solution, the
need for a robust isolation model is core to implementing any best practices SaaS
application. Any scenario where a tenant could end up accessing another tenant’s
resource—even inadvertently—could represent a significant setback to a SaaS
business. This requires organizations to be hyper-vigilant about implementing isolation
models that minimize their reliance authentication or well-behaved code as the pillars of
their isolation strategy.

Contributors to this document include:

e Tod Golding, Principal Partner Solutions Architect, AWS SaaS Factory

For additional information, see:

aws
33

https://www.youtube.com/watch?v=fuDZq-EspNA
https://d0.awsstatic.com/whitepapers/Multi_Tenant_SaaS_Storage_Strategies.pdf
https://aws.amazon.com/blogs/apn/managing-saas-identity-through-custom-attributes-and-amazon-cognito/
https://www.youtube.com/watch?v=jnFZGX2_T9U
https://www.youtube.com/watch?v=jnFZGX2_T9U

Amazon Web Services

Document Revisions

SaaS Tenant Isolation Strategies

Date Description

August 2020 First Publication

dws

34

	Abstract
	Introduction
	The Isolation Mindset
	Isolation: Security or Noisy Neighbor?

	Core Isolation Concepts
	Silo Isolation
	Silo Model Pros and Cons
	Pros
	Cons

	Pool Isolation
	Pool Model Pros and Cons
	Pros
	Cons

	The Bridge Model
	Bridge Model Pros and Cons

	Tier-Based Isolation
	Identity and Isolation

	Implementing Silo Isolation
	Full Stack Isolation
	Account Silo Isolation
	Virtual Private Cloud (VPC) Silo Isolation
	Subnet Silo Isolation

	Targeted Silo Isolation
	Silo Compute Considerations
	Silo for any Resource

	Implementing Pool Isolation
	Run-time, Policy-Based Isolation with IAM
	Scaling and Managing Pool Isolation Policies
	Pooled Storage Isolation Strategies
	Application-Enforced Pool Isolation
	Pool for any Resource
	Hiding the Details of Pooled Isolation

	Isolation Transparency
	Conclusion
	Contributors
	Further Reading
	Document Revisions

